

COMPARING COMPILERS ON INTEL™ PENTIUM 3 and PENTIUM 4

PROCESSORS WITH THE KALLMAN INTEGER AND LOGICAL ALGORITHM
George Delic *

HiPERiSM Consulting, LLC, Durham, NC
e-mail: george@hiperism.com

Web address: http://www.hiperism.com
Voice (919) 484-9803 Fax (919) 806-2813

1. INTRODUCTION

This is part of a series of reports on a project
to evaluate industry standard fortran 90/95
compilers for IA-32 Linux™ commodity platforms.
This report shows results, in a side-by-side
comparison for each compiler, for the Intel™
Pentium 3 (P3) and Pentium 4 Xeon (P4)
processors for the Kallman algorithm.

2.0 CHOICE OF HARDWARE AND
OPERATING SYSTEM

Results for the wall clock time are compared for
two benchmarks compiled using three different
Fortran compilers with the Linux™ operating
system and one with Windows 2000. For this
project benchmarks were executed in serial mode
on a dual processor Intel™ Pentium III (256KB L2
cache) and a dual processor Pentium 4 Xeon
3.06GHz (1MB L3 cache). These architectures
offers Streaming Single-Instruction-Multiple-Data
Extensions (with version 2, SSE2, for the Xeon).
This enables vectorization of loops operating on
multiple elements in a data set with a single
operation. Since SSE/SSE2 instructions are
irrelevant for non-floating point operations they are
not implemented in this report.

3.0 CHOICE OF COMPILERS

The choice of compilers for Linux™ IA-32
platforms now includes several vendor-supported
products. The importance of this category is that
vendor products have technical support and
undergo continuous development with ports to
new architectures as they arrive in the
marketplace. The four compilers chosen in this
survey are described separately in the following
sections and compiler switches used in the
benchmark are also discussed.

3.1 Absoft

Absoft f77 and f90/f95 are the Fortran
compilers included in the Absoft Pro Fortran™ 8.0
package for Linux™ offered by the Absoft
Corporation (http://www.absoft.com). The f90/f95
version has a Cray front-end and resulted from a
five-year collaboration with Cray Research. With
this compiler use of the –O3 compiler switch
enables automatic architecture detection and
selection of the Pentium 3 or 4 instruction set.

3.2 Intel

The Intel Fortran Compiler version 8.0 targets
both Intel IA-32 and IA-64 (Itanium) architectures,
but only the former has been used in this project
so far. Details on the compiler features are
available at HiPERiSM Consulting, LLC’s URL.
Code for target architectures is generated with
either the switch –tpp6 (v 7.1 on the Pentium 3) or
–tpp7 (v8.0 on the Pentium 4).

3.3 Lahey

The Lahey/Fujitsu Fortran 95 compiler
(hereafter Lahey) for Linux™ is available from
Lahey Computer Systems, Inc.,
(http://www.lahey.com). The Express version 5.6
for Microsoft Windows 2000™ was used on the P3
because it was available from another project for
the same hardware. With this compiler use of the
–tpp switch to enable automatic architecture
detection for the P3 only. However, release v7.1
(for Windows) and v6.2 (for Linux) support a --tp4
compiler switch to target the Pentium 4 Xeon. The
v6.2 release and the new switch is used here for
the P4 Xeon processor.

3.4 Portland

http://www.hiperism.com/
http://www.lahey.com/

The pgf90™ fortran compiler (Linux™
distribution) from the Portland Group,
(http://www.pgroup.com) was used in the CDK 4.0
release where it supports OpenMP, MPI and
OpenMP+MPI parallel applications on HiPERiSM’s
IA-32 Linux™ cluster. With this compiler use of the
–fast compiler switch enables automatic
architecture detection. Note that the CDK 5.1
release (not used here) may offer additional
performance enhancement of the Pentium 4 Xeon
processor.

3.5 Portability and migration issues

Portability issues come up when legacy
Fortran code needs to be compiled. In this respect
a compiler that allows extensions to the f90/f95
standard can save time and effort. The two
compilers that offer the widest scope in portability
are those from Absoft and Portland. Compilers
from Lahey and Intel are less forgiving of such
extensions. For example the Kallman algorithm
used logical operators such as the IAND, IOR, and
NOT intrinsic functions that are now part of the
Fortran 90 standard and require integer operands.
The older FORTRAN 77 standard .AND., .OR.,
.NOT. for integer operands no longer applies
under Fortran 90 because these operators are
reserved for logical operands. Nevertheless,
different compilers apply different extensions to
the standard and two of the compilers discussed
below (Absoft and Portland) compile the older
FORTRAN 77 standard (with the default Fortran
90 options) without comment. The Lahey compiler
does not allow the extensions and reports
compiler errors if they are used.

Here we also mention some migration issues

that came up with compiler and architecture
changes. The change in architecture from P3 to
P4 Xeon also involves changes in library versions.
As a result, two of the compilers had to either be
upgraded or have patches applied. Installation of
the Absoft 8.0 compiler for the Xeon processor
and the newer Linux Kernel does require
download and application of two patch files to
resolve glibc version issues (these patch files are
available from the Absoft URL given in Section
3.1). Likewise, an attempt was made to install the
7.1 release of the Intel Fortran compiler on the P4
Xeon. However, again version skew with glibc
suggested the simpler option of installing the 8.0
release. For similar reasons, the Lahey 6.2
release was not installed on the Pentium 3.
Whenever the version of a compiler is changed
performance is also expected to change. This is

especially true of the Intel compiler since major
performance improvements are announced with
the 8.0 release. Therefore, the changes in
performance reported here for the Intel compiler
are due to improvements in the compiler
technology as well as the change in architecture.

4.0 CHOICE OF BENCHMARKS

4.1 Introduction

The algorithm used here has been executed
on a wide variety of platforms and is an excellent
benchmark in studying how a compiler and
architecture interact for the types of operation they
use. A fuller discussion of the benchmarks is
available in previous reports (HCTR-1999-1,
HCTR-2001-1). What follows is only a brief
introduction.

4.2 Kallman Algorithm

The Kallman algorithm computes the
permanent of a (0,1) matrix with high efficiency
using only integer and logical operations and
some of the MIL-STD-1753 bit intrinsic functions
that are now part of Fortran 90/95. There is no
floating point work in the Kallman algorithm. A
fuller discussion of results is given by Delic and
Cash (2000). This algorithm is CPU intensive and
performs a small amount of I/O only at the
beginning and end of each run. Memory access
requirements are negligible and because of the
small instruction set, the instruction buffer fetch
rates are amongst the smallest we have seen. On
the IA-32 platform the executing code requires of
the order of 1MB of memory so that on the Xeon
processor it is expected to test the limits of
processor-cache bandwidth and latency. This
algorithm runs in scalar mode because of a
complex branching structure that inhibits
vectorization. Six cases where used in this
analysis corresponding to data sets with matrix
sizes N=30, 44, 48, 52, 56, 60.

5.0 COMPARING EXECUTION TIMES

The following sections summarize execution
time with four compilers for the Kallman algorithm
for six data sets (or Cases).

5.1 Timing performance

Whole code execution was measured with the
Linux™ time command. This choice was due in

http://www.pgroup.com/

part to the problem of portable timing procedures
in the different compilers. Wall clock time was also
measured with a Fortran 90/95 SECNDS routine
and differences from the time command
introduced an error of approximately 2% and was
therefore deemed to be of sufficient accuracy for
these simple benchmarks. Note that this particular
fortran routine is not portable, and may produce
different results with different compilers (e.g. the
Portland compiler only reports the time to the
nearest second).

5.2 Kallman Algorithm results

For the Kallman algorithm the choice of
compiler switches for the Xeon processor is
summarized in Table 5.1. For the Pentium III case
the only differences are the use of the Intel 7.1
and Lahey 5.6 releases. Timing results are shown
in Tables 5.2 (Pentium 3) and 5.3 (Pentium 4).
Figures 1 and 2, for Pentium 3 and Pentium 4
respectively, show the ratio of these times to the
compiler that reports the smallest execution time
for the six cases.

Table 5.1 Compiler command and switches for
the Kallman algorithm on the P3 and P4
processor

Compiler and
version

Compiler command and
selected switches

Absoft 8.0 f90 –O3 –ffixed

Intel 7.1 (P3)
Intel 8.0 (P4)

ifc –O3 –tpp6 –FI
ifort –fast –tpp7 -FI

Lahey 5.6 (P3)
Lahey 6.2 (P4)

lf95 –tpp –fix
lf95 --O2 --tp4 --fix

Portland 4.0 pgf90 –fast

Table 5.2 Execution times (seconds) for the
Kallman algorithm with four compilers on the
Pentium III (933 MHz).

N Absoft Intel Lahey Portland

30 0.21 0.36 0.48 0.6

44 40.38 80.19 98.45 135.29

48 6.44 13.15 16.16 22.52

52 23.03 48.20 59.30 83.28

56 197.78 412.83 509.31 712.42

60 12891.58 26734.09 32833.08 45451.38

Table 5.3 Execution times (seconds) for the
Kallman algorithm with four compilers on the
Pentium 4 Xeon (3.06 MHz, 1MB L3 cache).

N Absoft Intel Lahey Portland

30 0.089 0.50 0.172 0.24

44 18.36 9.80 38.00 45.37

48 2.83 1.67 6.00 7.66

52 10.06 5.41 21.80 26.72

56 87.47 49.00 190.73 226.68

60 5814.39 3027.74 12509.78 15613.0

Kallman Integer & Logical Algorithm (PIII 933 MHz)

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

Case

R
a

ti
o

 t
o

 A
b

s
o

ft
 t

im
e

Intel / Absoft

Lahey / Absoft

Portland /Absoft

Fig. 1 Ratio of execution times of three different
compilers to that for the Absoft compiler with the
Kallman algorithm on the Pentium 3.

Kallman Integer & Logical Algorithm

(P4 Xeon 3GHz, 1MB L3 cache)

0

0.5
1

1.5

2
2.5

3
3.5

4

4.5
5

5.5

1 2 3 4 5 6

Case

R
a

ti
o

 t
o

 I
n

te
l

ti
m

e

Absoft / Intel

Lahey / Intel

Portland / Intel

Fig. 2 Ratio of execution times of three different
compilers to that for the Intel compiler with the
Kallman algorithm on the Pentium 4 Xeon.

It is interesting to observe the changes in
performance between the Pentium 3 and 4. On the
Pentium 3 the Absoft compiler reported the lowest
wall clock times, whereas on the Pentium 4 the
Intel compiler does so. To compare the
performance gain for each compiler due to a
change in architecture Figure 3 shows the ratio of
the Pentium 3 execution times to those of the
Pentium 4. Except for Case 1, the performance
gain is of the order of 8 or better. It is surmised
that this is due to effective cooperative use of

processor and cache by the Intel compiler. A
deeper performance analysis of the underlying
reasons for these results is the subject of a future
report.

Kallman Integer & Logical Algorithm

(3GHz P4 versus 933 MHz P3)

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6

Case

R
a

ti
o

 o
f

P
3

 t
o

 P
4

 t
im

e

Absoft

Intel

Lahey

Portland

Fig. 3 Ratio of execution times of four different
compilers on the Pentium 3 versus the Pentium 4
Xeon for the Kallman algorithm.

It is instructive to compare theses results with
those for the Pentium II in the first of these reports
(HCTR-1999-1) for the Absoft compiler on the
Pentium II processors. The P4 Xeon results
reported here take 18-20 times less execution
time. This improvement is due to performance
developments in both compiler and architecture
technologies.

7.0 CONCLUSIONS

This report presented performance results of
four fortran compilers in the IA-32 environment.
The variability in performance found was specific
to the benchmarks selected and represented
extremes in arithmetic operation types. For the
Kallman algorithm performance results were
excellent in the transition from P3 to P4 and
corresponding compiler versions. Variability in
performance results is expected between
compilers and the details showed these to be
large. This was due to the exceptional
performance of the Intel 8.0 compiler. From this
result it may be surmised that with the P4 Xeon
architecture, when codes require little to no
memory traffic, performance results may be very
good.

The analysis in subsequent reports will

include in-depth evaluation of performance of this
group of compilers with specialized software such
as the Intel VTune™ Performance Analyzer. Also

in this evaluation the consequences of compiler
switches for numerical precision and stability will
be investigated.

Delic, G.and Cash, G., 2000: The Permanent of
0,1 Matrices and Kallman's Algorithm, Comput.
Phys. Comm., 124, 315-329.

