
 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

George Delic , Ph.D.

HiPERiSM Consulting, LLC

(919)484-9803

P.O. Box 569,

Chapel Hill, NC 27514

george@hiperism.com

http://www.hiperism.com

HiPERiSM Consulting, LLC.

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

PERFORMANCE OF AQM
APPLICATIONS ON COMMODITY

LINUX PLATFORMS

George Delic, Ph.D.

Models-3 User’s Workshop

October 18-20, 2004

Chapel Hill, NC

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Overview

1. Introduction

2. Choice of Hardware, Operating

System, & Compilers

3. Choice of Benchmarks

4. Results of Benchmarks

5. Conclusions

6. Outlook

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

1.0 Introduction

 Motivation

AQM’s are migrating to COTS hardware

Linux is preferred

Rich choice of compilers and tools is available

Need to learn about portability issues

 What is known about compilers for COTS?

Need a requirements analysis of differences in

Performance

Numerical accuracy & stability

Portability issues

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

2.0 Choice of Hardware, Operating

System, and Compilers

 Hardware

Intel Pentium 4 Xeon (3 GHz, dual processor)

with SSE2 extensions and 1MB L3 cache

Linux 2.4.20 kernel

 Fortran compilers for IA-32 Linux

Absoft 8.0 (9.0 current release)

Intel 8.0 (8.1 released 9/13/04)

Lahey 6.2

Portland CDK 5.1 (5.2 current release)

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

3.0 Choice of Benchmarks

3.1 STREAM memory benchmark

Developed by John D. McCalpin (VA Tech)

Available from http://www.streambench.org

Four kernels to measure memory bandwidth

Useful on commodity hardware where multiple

CPUs share the system bus

Serial (used here) or OpenMP versions (see

HiPERiSM’s URL)

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

The memory bandwidth problem
(STREAM logo used with permission)

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Compute Kernels of the STREAM

benchmark

Best results of ten trials with an iteration range of 1 to 20 x 106

No Name Kernel Bytes/

iterate

Flops/

iterate

Mops/

iterate

1 COPY a(i)=b(i) 16 0 2

2 SCALE a(i)=q*b(i) 16 1 2

3 ADD a(i)=b(i) + c(i) 24 1 3

4 TRIAD a(i)=b(i) + q*c(i) 24 2 3

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

3.0 Choice of Benchmarks (cont.)

3.2 Princeton Ocean Model (POM)

Example of “real-world” code that is

numerically unstable with sp arithmetic!

500+ vectorizable loops to exercise compilers

9 procedures account for 85% of CPU time

 2-Day simulation for three (i,j,k) grids:

 Grid 1: 100 x 40 x 15 Scaling = 1

 Grid 2: 128 x 120 x 16 Scaling = 4.4

 Grid 3: 256 x 256 x 16 Scaling = 17.5

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

3.0 Choice of Benchmarks (cont.)

3.3 MM5 Community Model v5.3

History of development on vector machines

Performance results for many platforms

Used Storm-of-the-Century (SOC) benchmark

Compared Intel and Portland compilers

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

3.0 Choice of Benchmarks (cont.)

3.4 CAMx

Developed by ENVIRON

Available from http://www.camx.com

For benchmark used 8/22-8/31, 2000, Scenario

for Houston Greater Metro area with TCEQ data

Used the UT/UNC version of CAMx

Grateful acknowledgements to Dr. Harvey Jeffries and

his Ph.D. student, Byeong-Uk Kim, for sharing the code

and for help on how to use it.

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

4.0 Results of Benchmarks

4.1 STREAM results

Tested with four compilers

Without and with compiler optimization switches

Note:

STREAM kernels are designed to “fool” optimizing compilers

so differences with and without optimization should be small.

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Memory bandwidth for STREAM

(MB/second with no optimization)

Name Absoft Intel Lahey Portland

COPY 1252.3 1289.8 1077.4 1300.8

SCALE 1252.3 1314.2 1138.8 1316.9

ADD 1616.8 1651.8 1230.8 1655.2

TRIAD 1649.4 1650.1 1230.8 1666.7

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Memory bandwidth for STREAM

(MB/second with optimization)

Name Absoft Intel Lahey Portland

COPY 1356.6 2677.8 1138.8 1322.3

SCALE 1352.0 2675.6 1207.6 1327.8

ADD 1660.8 2843.6 1227.6 1678.3

TRIAD 1662.7 2802.1 1230.8 1684.21

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Memory bandwidth for STREAM:

ratio of rates

STREAM benchmark: optimized versus non-

optimized (single processor P4 Xeon 3 GHz)

0

0.5

1

1.5

2

2.5

1 2 3 4

Kernel

R
a
ti

o
 o

f
ra

te
s
:

o
p

ti
m

iz
e
d

to
 n

o
n

-o
p

ti
m

iz
e
d

Absoft

Intel

Lahey

Portland

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Summary of STREAM results

Different compilers produce code with different
memory performance

Performance enhancement with optimization
enabled is most noticeable for kernels 1 & 2 with
all compilers

Enabling optimization for the Intel compiler
boosts memory bandwidth by factors

x 2 for kernels 1 and 2

x 1.7 for kernels 3 and 4

Note: these results are specific to serial code –

for OpenMP results see the HiPERiSM URL

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

4.0 Results of Benchmarks (cont.)

4.2 POM results

Tested four compilers without SSE2

Tested three compilers with SSE2

Looked at differences with problem size

scaling:

 Grid 1: 100 x 40 x 15 Scaling = 1

 Grid 2: 128 x 120 x 16 Scaling = 4.4

 Grid 3: 256 x 256 x 16 Scaling = 17.5

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Comparing Execution Times: POM

without SSE (seconds)

Grid Absoft Intel Lahey Portland

1 167.7 156.1 189.4 190.1

2 1925.9 1518.9 2809.7 1756.7

3 8685.2 7432.3 12731.8 8764.8

Note:

The Lahey compiler required the “—long” switch for large integers with

larger grids and this reduced performance.

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Comparing Execution Times: POM

POM Floating Point Algorithm (P4 Xeon 3GHz)

0

2000

4000

6000

8000

10000

12000

1 2 3

GRID

W
a

ll
 t

im
e

 (
s

e
c

o
n

d
s

)

Intel

Intel (SSE2)

Lahey

Lahey (SSE2)

Portland

Portland (SSE)

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Comparing Execution Times: POM

with SSE2 (% gain vs no SSE2)

Grid Intel Lahey Portland

1 1.2 -0.3 11.2

2 25.5 10.3 27.6

3 31.5 6.7 29.8

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Summary of POM results

Without SSE2
 Grid 2 and Grid 3 show large variability in

performance due to Lahey results

 Grid 1-3 Intel compiler is best (memory boost?)

With SSE2
 Performance gain increases with problem size for

both Intel and Portland compilers:

 ~ 26% for Grid 2

 ~ 30% for Grid 3

 Intel shows smallest wall clock time (vs. Portland)

 x 1.1 for Grid 2

 x 1.2 for Grid 3

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

4.0 Results of Benchmarks (cont.)

4.3 MM5 Results

Used Storm-of-the-Century (SOC) benchmark

Compared Intel and Portland compiler with

three switch groups: noopt, opt, SSE

Note:

There is no exact equivalence for the vect group of switches because

the Intel compiler does not distinguish vector and SSE instructions.

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Comparing Execution Times: MM5

Serial MM5 v3 for Storm of the Century

benchmark (P4 Xeon 3 GHz)

0

100
200

300
400

500
600

700
800

900
1000

1100

1 2

Case 1: pgf90 (5.1), Case 2: ifort (8.0)

W
a
ll

 t
im

e
 (

s
e
c
o

n
d

s
)

noopt

opt

vector

SSE

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Summary of MM5 results

Intel performance gain vs noopt

 Opt switch group yields 55%

 SSE switch group yields 66%

Portland performance gain vs noopt

 opt switch group yields 32%

 SSE switch group yields 38%

Speed up of Intel vs Portland

 for opt switch group x 1.26

 for SSE switch group x 1.51

Overall Intel delivers smallest wall clock time

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

4.0 Results of Benchmarks (cont.)

4.4 CAMx results
Tested Portland pgf90 compiler with five switch

groups that progressively enable higher level
optimizations:
 noopt (baseline: no optimization)

 opt (scalar optimizations)

 vect (vector optimizations)

 SSE (SSE for vector instructions)

 FSSE (SSE for scalar and vector instructions)

Note:

Portland compiler technical support made some suggestions.

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Comparing Execution Time: CAMx

CAMx for HGMCR (P4 Xeon, pgf90)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

8/
22

/0
0

8/
23

/0
0

8/
24

/0
0

8/
25

/0
0

8/
26

/0
0

8/
27

/0
0

8/
28

/0
0

8/
29

/0
0

8/
30

/0
0

8/
31

/0
0

Scenario day

W
a
ll

 t
im

e
 (

s
e
c
o

n
d

s
)

noopt

opt

vect

SSE

FSSE

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Summary of CAMx results

NO REDUCTION IN WALL CLOCK TIME

FROM ANY COMPILER OPTIMIZATIONS !!!!!

CAMx receives no benefit from this generation

of hardware and compiler technology which has

been demonstrated to produce such benefits in

other cases.

Possible reasons:

This is scalar code and vector potential is inhibited

CAMx is I/O bound and writes ONE word at a time in

implicit nested loops !!!!!!!!!!!!!

CAMx is sensitive to memory and I/O bandwidth.

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

5.0 Conclusions

 STREAM shows that memory bandwidth is the
principal differentiator for COTS (not clock speed).

 POM and MM5 showed that legacy vector codes
receive performance boosts from optimizations and
SSE on COTS hardware with current compilers and
performance gains increase with larger problem sizes

 CAMx: has serious problems on COTS and does not
benefit from the performance potential available now.
 Consequences for CAMx: re-design of code to reach

potential performance limits is advisable.

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

6.0 Outlook

 Hardware: COTS is delivering good performance on
legacy vector code. The outlook is good for such
code since future HPC CPU’s will have longer
pipelines and larger cache.

 Linux: Operating System is sufficiently reliable.

 Programming Environment: rich in compiler and
tools technology for code developers.

 Consequences for AQM: the outlook for hardware,
Linux, and programming environment requires
careful on-going re-design of code to reach
potential performance limits of future COTS
technology.

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

HiPERiSM’s URL

http://www.hiperism.com

Technical Reports pages for

details of the compiler switches

http://www.hiperism.com/

