
 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

George Delic , Ph.D.

HiPERiSM Consulting, LLC

(919)484-9803

P.O. Box 569,

Chapel Hill, NC 27514

george@hiperism.com

http://www.hiperism.com

HiPERiSM Consulting, LLC.

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

PERFORMANCE OF AQM
APPLICATIONS ON COMMODITY

LINUX PLATFORMS

George Delic, Ph.D.

Models-3 User’s Workshop

October 18-20, 2004

Chapel Hill, NC

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Overview

1. Introduction

2. Choice of Hardware, Operating

System, & Compilers

3. Choice of Benchmarks

4. Results of Benchmarks

5. Conclusions

6. Outlook

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

1.0 Introduction

 Motivation

AQM’s are migrating to COTS hardware

Linux is preferred

Rich choice of compilers and tools is available

Need to learn about portability issues

 What is known about compilers for COTS?

Need a requirements analysis of differences in

Performance

Numerical accuracy & stability

Portability issues

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

2.0 Choice of Hardware, Operating

System, and Compilers

 Hardware

Intel Pentium 4 Xeon (3 GHz, dual processor)

with SSE2 extensions and 1MB L3 cache

Linux 2.4.20 kernel

 Fortran compilers for IA-32 Linux

Absoft 8.0 (9.0 current release)

Intel 8.0 (8.1 released 9/13/04)

Lahey 6.2

Portland CDK 5.1 (5.2 current release)

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

3.0 Choice of Benchmarks

3.1 STREAM memory benchmark

Developed by John D. McCalpin (VA Tech)

Available from http://www.streambench.org

Four kernels to measure memory bandwidth

Useful on commodity hardware where multiple

CPUs share the system bus

Serial (used here) or OpenMP versions (see

HiPERiSM’s URL)

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

The memory bandwidth problem
(STREAM logo used with permission)

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Compute Kernels of the STREAM

benchmark

Best results of ten trials with an iteration range of 1 to 20 x 106

No Name Kernel Bytes/

iterate

Flops/

iterate

Mops/

iterate

1 COPY a(i)=b(i) 16 0 2

2 SCALE a(i)=q*b(i) 16 1 2

3 ADD a(i)=b(i) + c(i) 24 1 3

4 TRIAD a(i)=b(i) + q*c(i) 24 2 3

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

3.0 Choice of Benchmarks (cont.)

3.2 Princeton Ocean Model (POM)

Example of “real-world” code that is

numerically unstable with sp arithmetic!

500+ vectorizable loops to exercise compilers

9 procedures account for 85% of CPU time

 2-Day simulation for three (i,j,k) grids:

 Grid 1: 100 x 40 x 15 Scaling = 1

 Grid 2: 128 x 120 x 16 Scaling = 4.4

 Grid 3: 256 x 256 x 16 Scaling = 17.5

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

3.0 Choice of Benchmarks (cont.)

3.3 MM5 Community Model v5.3

History of development on vector machines

Performance results for many platforms

Used Storm-of-the-Century (SOC) benchmark

Compared Intel and Portland compilers

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

3.0 Choice of Benchmarks (cont.)

3.4 CAMx

Developed by ENVIRON

Available from http://www.camx.com

For benchmark used 8/22-8/31, 2000, Scenario

for Houston Greater Metro area with TCEQ data

Used the UT/UNC version of CAMx

Grateful acknowledgements to Dr. Harvey Jeffries and

his Ph.D. student, Byeong-Uk Kim, for sharing the code

and for help on how to use it.

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

4.0 Results of Benchmarks

4.1 STREAM results

Tested with four compilers

Without and with compiler optimization switches

Note:

STREAM kernels are designed to “fool” optimizing compilers

so differences with and without optimization should be small.

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Memory bandwidth for STREAM

(MB/second with no optimization)

Name Absoft Intel Lahey Portland

COPY 1252.3 1289.8 1077.4 1300.8

SCALE 1252.3 1314.2 1138.8 1316.9

ADD 1616.8 1651.8 1230.8 1655.2

TRIAD 1649.4 1650.1 1230.8 1666.7

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Memory bandwidth for STREAM

(MB/second with optimization)

Name Absoft Intel Lahey Portland

COPY 1356.6 2677.8 1138.8 1322.3

SCALE 1352.0 2675.6 1207.6 1327.8

ADD 1660.8 2843.6 1227.6 1678.3

TRIAD 1662.7 2802.1 1230.8 1684.21

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Memory bandwidth for STREAM:

ratio of rates

STREAM benchmark: optimized versus non-

optimized (single processor P4 Xeon 3 GHz)

0

0.5

1

1.5

2

2.5

1 2 3 4

Kernel

R
a
ti

o
 o

f
ra

te
s
:

o
p

ti
m

iz
e
d

to
 n

o
n

-o
p

ti
m

iz
e
d

Absoft

Intel

Lahey

Portland

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Summary of STREAM results

Different compilers produce code with different
memory performance

Performance enhancement with optimization
enabled is most noticeable for kernels 1 & 2 with
all compilers

Enabling optimization for the Intel compiler
boosts memory bandwidth by factors

x 2 for kernels 1 and 2

x 1.7 for kernels 3 and 4

Note: these results are specific to serial code –

for OpenMP results see the HiPERiSM URL

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

4.0 Results of Benchmarks (cont.)

4.2 POM results

Tested four compilers without SSE2

Tested three compilers with SSE2

Looked at differences with problem size

scaling:

 Grid 1: 100 x 40 x 15 Scaling = 1

 Grid 2: 128 x 120 x 16 Scaling = 4.4

 Grid 3: 256 x 256 x 16 Scaling = 17.5

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Comparing Execution Times: POM

without SSE (seconds)

Grid Absoft Intel Lahey Portland

1 167.7 156.1 189.4 190.1

2 1925.9 1518.9 2809.7 1756.7

3 8685.2 7432.3 12731.8 8764.8

Note:

The Lahey compiler required the “—long” switch for large integers with

larger grids and this reduced performance.

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Comparing Execution Times: POM

POM Floating Point Algorithm (P4 Xeon 3GHz)

0

2000

4000

6000

8000

10000

12000

1 2 3

GRID

W
a

ll
 t

im
e

 (
s

e
c

o
n

d
s

)

Intel

Intel (SSE2)

Lahey

Lahey (SSE2)

Portland

Portland (SSE)

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Comparing Execution Times: POM

with SSE2 (% gain vs no SSE2)

Grid Intel Lahey Portland

1 1.2 -0.3 11.2

2 25.5 10.3 27.6

3 31.5 6.7 29.8

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Summary of POM results

Without SSE2
 Grid 2 and Grid 3 show large variability in

performance due to Lahey results

 Grid 1-3 Intel compiler is best (memory boost?)

With SSE2
 Performance gain increases with problem size for

both Intel and Portland compilers:

 ~ 26% for Grid 2

 ~ 30% for Grid 3

 Intel shows smallest wall clock time (vs. Portland)

 x 1.1 for Grid 2

 x 1.2 for Grid 3

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

4.0 Results of Benchmarks (cont.)

4.3 MM5 Results

Used Storm-of-the-Century (SOC) benchmark

Compared Intel and Portland compiler with

three switch groups: noopt, opt, SSE

Note:

There is no exact equivalence for the vect group of switches because

the Intel compiler does not distinguish vector and SSE instructions.

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Comparing Execution Times: MM5

Serial MM5 v3 for Storm of the Century

benchmark (P4 Xeon 3 GHz)

0

100
200

300
400

500
600

700
800

900
1000

1100

1 2

Case 1: pgf90 (5.1), Case 2: ifort (8.0)

W
a
ll

 t
im

e
 (

s
e
c
o

n
d

s
)

noopt

opt

vector

SSE

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Summary of MM5 results

Intel performance gain vs noopt

 Opt switch group yields 55%

 SSE switch group yields 66%

Portland performance gain vs noopt

 opt switch group yields 32%

 SSE switch group yields 38%

Speed up of Intel vs Portland

 for opt switch group x 1.26

 for SSE switch group x 1.51

Overall Intel delivers smallest wall clock time

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

4.0 Results of Benchmarks (cont.)

4.4 CAMx results
Tested Portland pgf90 compiler with five switch

groups that progressively enable higher level
optimizations:
 noopt (baseline: no optimization)

 opt (scalar optimizations)

 vect (vector optimizations)

 SSE (SSE for vector instructions)

 FSSE (SSE for scalar and vector instructions)

Note:

Portland compiler technical support made some suggestions.

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Comparing Execution Time: CAMx

CAMx for HGMCR (P4 Xeon, pgf90)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

8/
22

/0
0

8/
23

/0
0

8/
24

/0
0

8/
25

/0
0

8/
26

/0
0

8/
27

/0
0

8/
28

/0
0

8/
29

/0
0

8/
30

/0
0

8/
31

/0
0

Scenario day

W
a
ll

 t
im

e
 (

s
e
c
o

n
d

s
)

noopt

opt

vect

SSE

FSSE

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

Summary of CAMx results

NO REDUCTION IN WALL CLOCK TIME

FROM ANY COMPILER OPTIMIZATIONS !!!!!

CAMx receives no benefit from this generation

of hardware and compiler technology which has

been demonstrated to produce such benefits in

other cases.

Possible reasons:

This is scalar code and vector potential is inhibited

CAMx is I/O bound and writes ONE word at a time in

implicit nested loops !!!!!!!!!!!!!

CAMx is sensitive to memory and I/O bandwidth.

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

5.0 Conclusions

 STREAM shows that memory bandwidth is the
principal differentiator for COTS (not clock speed).

 POM and MM5 showed that legacy vector codes
receive performance boosts from optimizations and
SSE on COTS hardware with current compilers and
performance gains increase with larger problem sizes

 CAMx: has serious problems on COTS and does not
benefit from the performance potential available now.
 Consequences for CAMx: re-design of code to reach

potential performance limits is advisable.

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

6.0 Outlook

 Hardware: COTS is delivering good performance on
legacy vector code. The outlook is good for such
code since future HPC CPU’s will have longer
pipelines and larger cache.

 Linux: Operating System is sufficiently reliable.

 Programming Environment: rich in compiler and
tools technology for code developers.

 Consequences for AQM: the outlook for hardware,
Linux, and programming environment requires
careful on-going re-design of code to reach
potential performance limits of future COTS
technology.

 Copyright, HiPERiSM Consulting, LLC, http://www.hiperism.com

HiPERiSM’s URL

http://www.hiperism.com

Technical Reports pages for

details of the compiler switches

http://www.hiperism.com/

