
 Copyright, HiPERiSM Consulting, LLC Monday, September 12, 2022

1

PERFORMANCE METRICS FOR AIR QUALITY MODELS
ON COMMODITY PLATFORMS

George Delic*

HiPERiSM Consulting, LLC, Durham, NC

1. INTRODUCTION

This is a progress report on a project to

evaluate industry standard fortran 90/95 compilers
for IA-32 Linux™ commodity platforms when
applied to Air Quality Models (AQM). The goal is
to determine the optimal performance and
workload though-put achievable with commodity
hardware for such models because they are in
wide-spread use on these platforms. New results
are presented for CMAQ 4.4 that give insight into
the algorithm’s performance on commodity
architectures. Important performance bottle-necks
are identified with the aid of proprietary software to
collect and compute performance metrics using a
publicly available hardware performance interface.
In this report only serial (single processor) results
are presented and MPI performance is the subject
of a future study.

2. CHOICE OF HARDWARE, OPERATING
SYSTEM, AND COMPILERS

The hardware used for the results reported

here is the Intel Pentium 3 (P3), Pentium 4 Xeon
(P4), and (in the sequel) Pentium Xeon 64EMT
(P4emt) processors. These have processor clock
rates of 933MHz, 3GHz and 3.4 GHz, respectively.
Each is in a dual configuration with a
corresponding system bus (FSB) of 133MHz,
533MHz and 800HMz shared by each pair of
processors. The operating system (OS) is
HiPERiSM Consulting, LLC’s modification of the
Linux™ 2.4.20 (P3) and 2.6.9 (P4, P4emt) kernels
to include a patch that enables access to
hardware performance counters. This modification
allows the use of the PAPI performance event
library (PAPI, 2005) to collect hardware
performance counter values as the code executes.
The compiler used was the Portland pgf90/95 with
release 4.0 (P3) and 6.0 (P4 and P4emt) for the
four groups of optimization switches shown in
Table 1.

*Corresponding author: George Delic, HiPERiSM

Consulting, LLC, P.O. Box 569, Chapel Hill, NC 27514-
0569; e-mail: george@hiperism.com

 All three architectures offer Streaming Single-
Instruction-Multiple-Data Extensions, (SSE) to
enable vectorization of loops operating on multiple
elements in a data set with a single operation. The
Portland compiler specifically enables SSE
through a compiler switch (sse in Table 1) and this
has been used in these tests.

TABLE 1. Compiler command and switches

Compiler

and
version*

Compiler
optimization

switches

Switch
group

mnemonic

pgf90/95
4.0 (6.0)

–O0 –tp p6(p7)
–O2 –tp p6(p7)
–fast –Mvect –tp p6(p7)
–fast –Mvect=sse –tp p6(p7)

noopt
opt
vect
sse

* Version 4.0 has a P3 target architecture and 6.0 has
P4 with the target switch for the latter shown as (p7).

3. CHOICE OF BENCHMARKS

The choice of benchmarks includes two of the

tutorial examples that come with the CMAQ
distribution. These four examples are: days 1 and
2 at 32 km resolution (Cases 1 and 2), and days 1
and 2 at 8km resolution (Cases 3 and 4). The
performance results for Cases 1 (32km) and 3
(8km) are presented here.

4. HARDWARE PERFORMANCE EVENTS

The PAPI (PAPI, 2005) interface defines over

a hundred hardware performance events, but not
all of these events are available on all platforms.
For the Intel hardware under discussion the
number of hardware events that can be collected
are, respectively, 46 (P3), 28 (P4), and 25
(P4emt). However, not all events can be collected
in a single execution due to the fact that the
number of hardware counters is small (two for P3
and four for P4). Thus, multiple executions are
needed to collect all available events on any given

 Copyright, HiPERiSM Consulting, LLC Monday, September 12, 2022

2

platform. Table 2 lists only events that are
common to these three platforms grouped by
category. The process time (PTIME) reported here
is obtained from the hardware performance
counter interface.

TABLE 2. PAPI events common to the Intel P3,

P4 and P4emt.

Category Description Name

Floating
Point
Operations

Floating point
instructions
Floating point
operations

PAPI_FP_INS

PAPI_FP_OPS

Instruction
Counting

Total cycles
Instructions issued
Instructions
completed

PAPI_TOT_CYC
PAPI_TOT_IIS
PAPI_TOT_INS

Data
Access

Cycles stalled on any
resource

PAPI_RES_STL

Cache
Access

L1 data cache
misses
L1 load misses
L1 instruction cache
accesses
L1 instruction cache
misses
L2 load misses
L2 store misses
L2 total cache misses

PAPI_L1_DCM

PAPI_L1_LDM
PAPI_L1_ICA

PAPI_L1_ICM

PAPI_L2_LDM
PAPI_L2_STM
PAPI_L2_TCM

TLB
Operations

Instruction translation
lookaside buffer
misses

PAPI_TLB_IM

5. PERFORMANCE METRICS

5.1 Rate performance metrics

Rate metrics have the suffix “_rate” (except for

MFLOPS) and some examples include
TOT_CYC_rate, TOT_INS_rate, and
RES_STL_rate. This naming convention uses the
corresponding PAPI event name in Table 2
divided by the process time with units of million
per second. The following discussion will use
those rate metrics of relevance in identifying
bottle-necks in CMAQ.

5.2 Ratio performance metrics

In addition to rate metrics, ratios of PAPI

events define a set of ratio metrics. Table 3 lists a
few examples of ratio metrics used in the following
discussion to identify performance bottle-necks in
CMAQ. Other rate metrics are introduced as
needed.

TABLE 3. Examples of ratio metrics common

to the Intel P3 and P4 Xeon.

Description Name

Memory instructions versus total
instructions
Memory instructions per floating
point instruction

MEM_INS_TOT

MEM_INS_FPINS

Respectively, L1 instruction,
data, and total cache misses per
floating point operation

L1_ICM_FPOP
L1_DCM_FPOP
L1_TCM_FPOP

L2 total cache misses per
floating point operation

L2_TCM_FPOP

5.3 Profiling and code performance

While not a metric, execution profiling is useful

in determining where “hot spots” occur in the
source code by measuring (cumulative) time
consumed during the code execution. A profile of
CMAQ is discussed to identify the compute
intensive routines and their code characteristics.

6. CMAQ PERFORMANCE RESULTS

6.1 Operations, instructions, and cycles

Figures 1 and 2, respectively, show the

process time and Mflops (million floating point
operations per second) for CMAQ on P3 and P4
platforms. This (and all subsequent figures unless
otherwise noted) show four executions for each of
the Case 1 and Case 3 benchmarks defined in
Section 3. Each group of four executions
corresponds to the same choice of compiler
switches listed in Table 1. Comparing Case 1 (C1)
and Case 3 (C3) shows that the higher resolution
grid (C3) typically has a 7% lower performance.
The left and right hand parts show, respectively,
the P3 and P4 results. As expected, the P4
process time is less than the corresponding P3
time. However, on both processors the higher

 Copyright, HiPERiSM Consulting, LLC Monday, September 12, 2022

3

level optimizations (vect and sse) give negligible
performance gain suggesting little (if any) vector
character in CMAQ code. When sse switches
were enabled the measured vector instruction
counts were less than four percent of all floating
point instructions issued. Thus the gain in
performance for CAMQ between P3 and P4
processors can be attributed largely to the
improvement in scalar hardware performance. As
examples of the latter, Fig. 3 shows the change in
the instruction completion rate and a similar
increase is observed in the rate at which cycles
are completed.

0

200

400

600

800

1000

1200

1400

1600

1800

C
1

-p
g

f-
4

0
-n

o
o

p
t

C
1

-p
g

f-
4

0
-o

p
t

C
1

-p
g

f-
4

0
-v

e
c
t

C
1

-p
g

f-
4

0
-s

s
e

C
3

-p
g

f-
4

0
-n

o
o

p
t

C
3

-p
g

f-
4

0
-o

p
t

C
3

-p
g

f-
4

0
-v

e
c
t

C
3

-p
g

f-
4

0
-s

s
e

C
1

-p
g

f-
6

0
-n

o
o

p
t

C
1

-p
g

f-
6

0
-o

p
t

C
1

-p
g

f-
6

0
-v

e
c
t

C
1

-p
g

f-
6

0
-s

s
e

C
3

-p
g

f-
6

0
-n

o
o

p
t

C
3

-p
g

f-
6

0
-o

p
t

C
3

-p
g

f-
6

0
-v

e
c
t

C
3

-p
g

f-
6

0
-s

s
e

CMAQ model case and pgf90 compiler switch group

P
ro

c
e

s
s

 t
im

e
 (

s
e

c
o

n
d

s
)

Fig. 1. Process time for CMAQ model tutorial cases 1
(C1) and 3 (C3) on P3 and P4 processors. Each case
has the four groups of compiler switches defined in
Table 1.

0

50
100

150

200

250

300

350

400
450

500

C
1-

pg
f-4

0-
no

op
t

C
1-

pg
f-4

0-
op

t

C
1-

pg
f-4

0-
ve

ct

C
1-

pg
f-4

0-
ss

e

C
3-

pg
f-4

0-
no

op
t

C
3-

pg
f-4

0-
op

t

C
3-

pg
f-4

0-
ve

ct

C
3-

pg
f-4

0-
ss

e

C
1-

pg
f-6

0-
no

op
t

C
1-

pg
f-6

0-
op

t

C
1-

pg
f-6

0-
ve

ct

C
1-

pg
f-6

0-
ss

e

C
3-

pg
f-6

0-
no

op
t

C
3-

pg
f-6

0-
op

t

C
3-

pg
f-6

0-
ve

ct

C
3-

pg
f-6

0-
ss

e

CMAQ model case and pgf90 compiler switch group

M
fl

o
p

s

Fig. 2. Mflops for CMAQ model tutorial cases 1 (C1) and
3 (C3) on P3 and P4 processors. Each case has the
four groups of compiler switches defined in Table 1.

Of special interest is the memory behavior of

CMAQ and Fig. 4 shows the number of cycles
stalled on any (memory) resource per unit time
(the RES_STL_rate metric). Not surprisingly, there
is a distinct improvement for the P4 over the P3

due to the FSB bandwidth and cache size
increases. However, there is variability in this
metric for the P4 and a deeper investigation of the
CMAQ memory footprint is appropriate.

0

200

400

600

800

1000

1200

1400

1600

1800

C
1-

pg
f-4

0-
no

op
t

C
1-

pg
f-4

0-
op

t

C
1-

pg
f-4

0-
ve

ct

C
1-

pg
f-4

0-
ss

e

C
3-

pg
f-4

0-
no

op
t

C
3-

pg
f-4

0-
op

t

C
3-

pg
f-4

0-
ve

ct

C
3-

pg
f-4

0-
ss

e

C
1-

pg
f-6

0-
no

op
t

C
1-

pg
f-6

0-
op

t

C
1-

pg
f-6

0-
ve

ct

C
1-

pg
f-6

0-
ss

e

C
3-

pg
f-6

0-
no

op
t

C
3-

pg
f-6

0-
op

t

C
3-

pg
f-6

0-
ve

ct

C
3-

pg
f-6

0-
ss

e

CMAQ model case and pgf90 compiler switch group

T
O

T
_
IN

S
_
ra

te
 (

m
il
li
o

n
/s

e
c
o

n
d

)

Fig. 3. Instructions completed in million per second for
CMAQ model tutorial cases 1 (C1) and 3 (C3) on P3
and P4 processors. Each case has the four groups of
compiler switches defined in Table 1.

0

50

100

150

200

250

300

350

400

450

500

C
1-

pg
f-4

0-
no

op
t

C
1-

pg
f-4

0-
op

t

C
1-

pg
f-4

0-
ve

ct

C
1-

pg
f-4

0-
ss

e

C
3-

pg
f-4

0-
no

op
t

C
3-

pg
f-4

0-
op

t

C
3-

pg
f-4

0-
ve

ct

C
3-

pg
f-4

0-
ss

e

C
1-

pg
f-6

0-
no

op
t

C
1-

pg
f-6

0-
op

t

C
1-

pg
f-6

0-
ve

ct

C
1-

pg
f-6

0-
ss

e

C
3-

pg
f-6

0-
no

op
t

C
3-

pg
f-6

0-
op

t

C
3-

pg
f-6

0-
ve

ct

C
3-

pg
f-6

0-
ss

e

CMAQ model case and pgf90 compiler switch group

R
E

S
_
S

T
L

_
ra

te
 (

m
il
li
o

n
/s

e
c
o

n
d

)

Fig. 4. Cycles stalled on any resource in million per
second for CMAQ model tutorial cases 1 (C1) and 3
(C3) on P3 and P4 processors. Each case has the four
groups of compiler switches defined in Table 1.

6.2 Memory footprint

The CMAQ memory footprint has some

revealing characteristics. First of all, as shown in
Fig. 5, the rate of total memory instructions issued
(loads plus stores) is voluminous. Only results for
the P4 processor are shown in Figs. 5 to 7
because not all of these events are available on
the P3. High rates of memory instruction issue, in
itself, need not be an indicator of a performance
bottleneck. Benchmarks with good vector
character that deliver of the order of 1Gflop on a
P4 can also show high memory access rates.

 Copyright, HiPERiSM Consulting, LLC Monday, September 12, 2022

4

However, an interesting differentiator is the ratio
metric MEM_INS_FPINS which is the number of
memory instructions issued per floating point
instruction. Figure 6 shows that with noopt
compiler switches this number is greater than 7.
Even on allowing optimization this metric is still of
the order of 4. Note that Case 3 (8km grid) has a
slightly higher value than than Case 1 (32km grid).
Notably, the compiler offers no reduction with the
higher optimization levels (vect, sse).

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

C1-

pgf-60-

noopt

C1-

pgf-60-

opt

C1-

pgf-60-

vect

C1-

pgf-60-

sse

C3-

pgf-60-

noopt

C3-

pgf-60-

opt

C3-

pgf-60-

vect

C3-

pgf-60-

sse

CMAQ model case and pgf90 compiler switch group

M
E

M
_
T

O
T

_
ra

te
 (

m
il
li
o

n
/s

e
c
o

n
d

)

Fig. 5. Total memory instructions in million per second
for CMAQ model tutorial cases 1 (C1) and 3 (C3) on the
P4 processor. Each case has the four groups of
compiler switches defined in Table 1.

0

1

2

3

4

5

6

7

8

C1-pgf-

60-

noopt

C1-pgf-

60-opt

C1-pgf-

60-vect

C1-pgf-

60-sse

C3-pgf-

60-

noopt

C3-pgf-

60-opt

C3-pgf-

60-vect

C3-pgf-

60-sse

CMAQ model case and pgf90 compiler switch group

M
E

M
_
IN

S
_
F

P
IN

S

Fig. 6. Number of memory instructions per floating point
instruction for CMAQ model tutorial cases 1 (C1) and 3
(C3) on the P4 processor. Each case has the four
groups of compiler switches defined in Table 1.

The results of the MEM_INS_FPINS metric
suggests that CMAQ is a memory-intensive
algorithm. This is not necessarily an issue on
proprietary architectures where high memory
bandwidth is available and multiple loads or stores
per cycle are possible. However, a memory
intensive application, without a dominant vector

character, is performance constricted on
commodity architectures where memory
bandwidth is limited by the FSB and cache design.

The consequence of CMAQ’s memory
footprint is that cache can become a limiting
critical resource. Between the processor and the
first level of cache (L1) there is the TLB cache.
The translation lookaside buffer (TLB) is a small
buffer (or cache) to which the processor presents
a virtual memory address and looks up a table for
a translation to a physical memory address. If the
address is found in the TLB table then there is a
hit (no translation is computed) and the processor
continues. The TLB buffer is usually small, and
efficiency depends on hit rates as high as 98%. If
the translation is not found (a TLB miss) then
several cycles are lost while the physical address
is translated. Therefore TLB misses are another
form of degraded performance. PAPI offers
counters for TLB miss events for both instruction
and data. In the case of CMAQ it is the data TLB
misses that are critical. For example, comparison
of the sse results for C1 and C3 in Fig. 7 shows a
20% increase in TLB misses and this correlates
with a Mflops reduction of 6.6% (see Fig. 2).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C1-

pgf-60-

noopt

C1-

pgf-60-

opt

C1-

pgf-60-

vect

C1-

pgf-60-

sse

C3-

pgf-60-

noopt

C3-

pgf-60-

opt

C3-

pgf-60-

vect

C3-

pgf-60-

sse

CMAQ model case and pgf90 compiler switch group

T
L

B
_
D

M
_
ra

te
 (

m
il
li
o

n
/s

e
c
o

n
d

)

Fig. 7. TLB data cache misses in million per second for
CMAQ model tutorial cases 1 (C1) and 3 (C3) on the P4
processor. Each case has the four groups of compiler
switches defined in Table 1.

6.3 Cache usage

A code that is memory intensive will be

sensitive to cache misses on commodity
architectures. Both the P3 and P4 platforms
discussed here have L1 and L2 caches, but these
are larger on the P4 platform. Nevertheless, a
cache miss occurs when data or instructions are
not found in the cache and an excursion to higher
level cache or memory is necessitated. Cache
misses result in lost performance because of

 Copyright, HiPERiSM Consulting, LLC Monday, September 12, 2022

5

increasing latency in the memory hierarchy.
Memory latency is smallest at the register level
and increases by an order of magnitude for a L1
cache reference, and another order of magnitude
to access L2 cache. In the case of CMAQ the rate
of L1 cache misses are shown in Fig. 8 for P3 and
P4 platforms. Despite the larger cache on the P4
platform the incidence is much larger, due in part,
to the higher rate of instruction issue. Even though
the L1 cache on the P4 is larger than that of the
P3, L1 data cache misses are a source of
degraded performance for CMAQ.

0
2
4
6
8

10
12
14
16
18
20
22

C
1-

pg
f-4

0-
no

op
t

C
1-

pg
f-4

0-
op

t

C
1-

pg
f-4

0-
ve

ct

C
1-

pg
f-4

0-
ss

e

C
3-

pg
f-4

0-
no

op
t

C
3-

pg
f-4

0-
op

t

C
3-

pg
f-4

0-
ve

ct

C
3-

pg
f-4

0-
ss

e

C
1-

pg
f-6

0-
no

op
t

C
1-

pg
f-6

0-
op

t

C
1-

pg
f-6

0-
ve

ct

C
1-

pg
f-6

0-
ss

e

C
3-

pg
f-6

0-
no

op
t

C
3-

pg
f-6

0-
op

t

C
3-

pg
f-6

0-
ve

ct

C
3-

pg
f-6

0-
ss

e

CMAQ model case and pgf90 compiler switch group

L
1
_
D

C
M

_
ra

te
 (

m
il
li
o

n
/s

e
c
o

n
d

)

Fig. 8. L1 Data cache miss rate in million per
second for CMAQ model tutorial cases 1 (C1) and 3
(C3) on P3 and P4 processors. Each case has the four
groups of compiler switches defined in Table 1.

0

0.02

0.04

0.06

0.08

0.1

C
1-

pg
f-4

0-
no

op
t

C
1-

pg
f-4

0-
op

t

C
1-

pg
f-4

0-
ve

ct

C
1-

pg
f-4

0-
ss

e

C
3-

pg
f-4

0-
no

op
t

C
3-

pg
f-4

0-
op

t

C
3-

pg
f-4

0-
ve

ct

C
3-

pg
f-4

0-
ss

e

C
1-

pg
f-6

0-
no

op
t

C
1-

pg
f-6

0-
op

t

C
1-

pg
f-6

0-
ve

ct

C
1-

pg
f-6

0-
ss

e

C
3-

pg
f-6

0-
no

op
t

C
3-

pg
f-6

0-
op

t

C
3-

pg
f-6

0-
ve

ct

C
3-

pg
f-6

0-
ss

e

CMAQ model case and pgf90 compiler switch group

L
1
 c

a
c
h

e
 m

is
s
e
s
 p

e
r

fl
o

p

L1_ICM_FPOP

L1_DCM_FPOP

L1_TCM_FPOP

Fig. 9. L1 instruction, data, and total cache misses per
floating point operation for CMAQ model tutorial cases 1
(C1) and 3 (C3) on P3 and P4 processors. Each case
has the four groups of compiler switches defined in
Table 1.

Since CMAQ has four memory operations per

flop it is more instructive to inspect the number of
L1 cache misses per flop. This is shown in Fig. 9

for both L1 instruction and data cache misses for
P3 and P4 platforms. Interestingly, on the P3, for
the opt, vect and sse switch groups, the result of
this ratio metric is similar for both instruction and
data cache misses. However, for the P4 the
number of instruction cache misses per flop is
much smaller than the value for L1 data cache
misses. The total number of L1 cache misses per
flop are generally larger for the P3 when
compared to the P4. It is noteworthy that the value
of this metric for L1 data cache misses is of the
order of 0.04 on the P4. One L1 data cache miss
per 20 flops seems to be a small value. But for a
memory intensive code with negligible vector
instructions, the latency cost of memory access is
the limiting factor on performance improvement
above the opt level of compiler optimizations.

0

0.002

0.004

0.006

0.008

0.01

0.012

C
1-

pg
f-4

0-
no

op
t

C
1-

pg
f-4

0-
op

t

C
1-

pg
f-4

0-
ve

ct

C
1-

pg
f-4

0-
ss

e

C
3-

pg
f-4

0-
no

op
t

C
3-

pg
f-4

0-
op

t

C
3-

pg
f-4

0-
ve

ct

C
3-

pg
f-4

0-
ss

e

C
1-

pg
f-6

0-
no

op
t

C
1-

pg
f-6

0-
op

t

C
1-

pg
f-6

0-
ve

ct

C
1-

pg
f-6

0-
ss

e

C
3-

pg
f-6

0-
no

op
t

C
3-

pg
f-6

0-
op

t

C
3-

pg
f-6

0-
ve

ct

C
3-

pg
f-6

0-
ss

e

CMAQ model case and pgf90 compiler switch group

L
2
_
T

C
M

_
F

P
O

P

Fig. 10. L2 total cache misses per floating point
operation for CMAQ model tutorial cases 1 (C1) and 3
(C3) on P3 and P4 processors. Each case has the four
groups of compiler switches defined in Table 1.

7. CMAQ EXECUTION PROFILE

An execution profile of CMAQ is easily

performed with the –Mprof=lines compiler switch in
the pgf90/95 compiler. Results for Case 3 (8km
grid) with the sse optimization switches is shown
in Table 4. This shows those functions accounting
for 68% of the cumulative process time with some
that have a high calling overhead. Once the
important functions are identified code inspection
shows some reasons why vector instructions are
scarce in CMAQ. The top two routines account for
31% of the process time but inhibit loop
vectorization because of either exits out of the
loop range (hrsolver), or I/O operations inside
otherwise vectorizable loops (cksummer).
Subroutine kmtab (and others not shown) account
for a negligible amount of the process time but
have a very high calling overhead. These routines

 Copyright, HiPERiSM Consulting, LLC Monday, September 12, 2022

6

(and also vppm) should be inlined to reduce the
cost of control transfer instructions. Inline methods
are well documented in the PGI User’s Guide.
Likewise interprocedural optimizations should be
applied with the –Mipa compiler switch. Both of
these simple steps should give significant
reductions of process time and will be tested at a
later date.

However, the removal of vectorization
inhibitors in the top two routines would require
source code modifications.

TABLE 4. CMAQ P4 profile for Case 3 (sse)

Function

Number of calls Time (%)

hrsolver
cksummer
hppm
vppm
ludcmp
hrcalcks
calcact
kmtab

2387952
2473

117832
27461448

2016360
2387952
9362289

59699539

16
15
14
9
6
4
2
2

…….
68

8. CONCLUSIONS

This performance analysis of CMAQ, for two

of the 4.4 release tutorial problems, at two grid
resolutions, shows that this is a memory intensive
application with some 4 memory operations to
each floating point operation. Also, a negligible
number of vector instructions are measured at the
highest optimization level. In combination these
two characteristics of the CMAQ code place a limit
on the optimal performance possible from CMAQ
on commodity platforms. This is because, by
design, commodity hardware solutions offer a cost
effective compromise between processor clock
rates, cache size, and bandwidth (or latency) to
memory.

In its present form, CMAQ gains mostly from
improvements in the scalar performance of the
hardware. But, despite these observations, a
profile of CMAQ performance, followed by code
inspection, does suggest that there is scope for
performance improvement beyond the 400 to 450
Mflop range it currently delivers on the P4 for the
tutorial problems that come with the 4.4 release.

REFERENCES

CMAQ, 2005: CMAQ was developed in the
Atmospheric Modeling Division (AMD) of the
NOAA Air Resources Laboratory (ARL) in
collaboration with the U.S. EPA’s National
Exposure Research Laboratory (NERL) and is
distributed by CMAS at
http://www.cmascenter.org.

PAPI, 2005: Performance Application
Programming Interface, http://icl.cs.utk.edu/papi.
Note that the use of PAPI requires a Linux kernel
patch (as described in the distribution).

http://www.cmascenter.org/
http://icl.cs.utk.edu/papi

