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1. INTRODUCTION 
 
This is a progress report on a project to 

evaluate industry standard fortran 90/95 compilers 
for IA-32 Linux™ commodity platforms when 
applied to Air Quality Models (AQM). The goal is 
to determine the optimal performance and 
workload though-put achievable with commodity 
hardware for such models because they are in 
wide-spread use on these platforms. New results 
are presented for CMAQ 4.4 that give insight into 
the algorithm’s performance on commodity 
architectures. Important performance bottle-necks 
are identified with the aid of proprietary software to 
collect and compute performance metrics using a 
publicly available hardware performance interface. 
In this report only serial (single processor) results 
are presented and MPI performance is the subject 
of a future study. 

 

2. CHOICE OF HARDWARE, OPERATING 
SYSTEM, AND COMPILERS 

 
The hardware used for the results reported 

here is the Intel Pentium 3 (P3), Pentium 4 Xeon 
(P4), and (in the sequel) Pentium Xeon 64EMT 
(P4emt) processors. These have processor clock 
rates of 933MHz, 3GHz and 3.4 GHz, respectively. 
Each is in a dual configuration with a 
corresponding system bus (FSB) of 133MHz, 
533MHz and 800HMz shared by each pair of 
processors. The operating system (OS) is 
HiPERiSM Consulting, LLC’s modification of the 
Linux™ 2.4.20 (P3) and 2.6.9 (P4, P4emt) kernels 
to include a patch that enables access to 
hardware performance counters. This modification 
allows the use of the PAPI performance event 
library (PAPI, 2005) to collect hardware 
performance counter values as the code executes. 
The compiler used was the Portland pgf90/95 with 
release 4.0 (P3) and 6.0 (P4 and P4emt) for the 
four groups of optimization switches shown in 
Table 1. 

                                                      
*Corresponding author: George Delic, HiPERiSM 

Consulting, LLC, P.O. Box 569, Chapel Hill, NC 27514-
0569; e-mail: george@hiperism.com 

 All three architectures offer Streaming Single-
Instruction-Multiple-Data Extensions, (SSE) to 
enable vectorization of loops operating on multiple 
elements in a data set with a single operation. The 
Portland compiler specifically enables SSE 
through a compiler switch (sse in Table 1) and this 
has been used in these tests.  
 

 
TABLE 1. Compiler command and switches 

 

 
Compiler 

and 
version* 

 

Compiler 
optimization 

switches 

Switch 
group 

mnemonic 

 

 

pgf90/95 
4.0 (6.0) 

–O0 –tp p6(p7) 
–O2 –tp p6(p7) 
–fast –Mvect –tp p6(p7) 
–fast –Mvect=sse –tp p6(p7) 

noopt 
opt 
vect 
sse 

 

 
* Version 4.0 has a P3 target architecture and 6.0 has 
P4 with the target switch for the latter shown as (p7). 

 

3. CHOICE OF BENCHMARKS 
 
The choice of benchmarks includes two of the 

tutorial examples that come with the CMAQ 
distribution. These four examples are: days 1 and 
2 at 32 km resolution (Cases 1 and 2), and days 1 
and 2 at 8km resolution (Cases 3 and 4). The 
performance results for Cases 1 (32km) and 3 
(8km) are presented here. 

 

4. HARDWARE PERFORMANCE EVENTS 
 
The PAPI (PAPI, 2005) interface defines over 

a hundred hardware performance events, but not 
all of these events are available on all platforms. 
For the Intel hardware under discussion the 
number of hardware events that can be collected 
are, respectively, 46 (P3), 28 (P4), and 25 
(P4emt). However, not all events can be collected 
in a single execution due to the fact that the 
number of hardware counters is small (two for P3 
and four for P4). Thus, multiple executions are 
needed to collect all available events on any given 
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platform. Table 2 lists only events that are 
common to these three platforms grouped by 
category. The process time (PTIME) reported here 
is obtained from the hardware performance 
counter interface. 
 

 
TABLE 2. PAPI events common to the Intel P3, 

P4 and P4emt. 
 

 
Category Description Name 

 

 

Floating 
Point 
Operations 

Floating point 
instructions 
Floating point  
operations 
 

PAPI_FP_INS 
 
PAPI_FP_OPS 

Instruction 
Counting 

Total cycles 
Instructions issued 
Instructions 
completed 
 

PAPI_TOT_CYC 
PAPI_TOT_IIS 
PAPI_TOT_INS 

Data 
Access 

Cycles stalled on any 
resource 
 

PAPI_RES_STL 

Cache 
Access 

L1 data cache 
misses 
L1 load misses 
L1 instruction cache 
accesses 
L1 instruction cache 
misses 
L2 load misses 
L2 store misses 
L2 total cache misses 
 

PAPI_L1_DCM 
 
PAPI_L1_LDM 
PAPI_L1_ICA 
 
PAPI_L1_ICM 
 
PAPI_L2_LDM 
PAPI_L2_STM 
PAPI_L2_TCM 

TLB 
Operations 

Instruction translation 
lookaside buffer 
misses 

PAPI_TLB_IM 

 

 

 

5. PERFORMANCE METRICS 
 

5.1 Rate performance metrics 
 
Rate metrics have the suffix “_rate” (except for 

MFLOPS) and some examples include 
TOT_CYC_rate, TOT_INS_rate, and 
RES_STL_rate. This naming convention uses the 
corresponding PAPI event name in Table 2 
divided by the process time with units of million 
per second. The following discussion will use 
those rate metrics of relevance in identifying 
bottle-necks in CMAQ. 

 
 

5.2 Ratio performance metrics 
 
In addition to rate metrics, ratios of PAPI 

events define a set of ratio metrics. Table 3 lists a 
few examples of ratio metrics used in the following 
discussion to identify performance bottle-necks in 
CMAQ. Other rate metrics are introduced as 
needed. 
 

 
TABLE 3. Examples of ratio metrics common 

to the Intel P3 and P4 Xeon. 
 

 
Description Name 

Memory instructions versus total 
instructions 
Memory instructions per floating 
point instruction 
 

MEM_INS_TOT 
 
MEM_INS_FPINS 

Respectively, L1 instruction, 
data, and total cache misses per 
floating point operation 
 

L1_ICM_FPOP 
L1_DCM_FPOP 
L1_TCM_FPOP 

L2 total cache misses per 
floating point operation 

L2_TCM_FPOP 

 

 

 

5.3 Profiling and code performance 
 
While not a metric, execution profiling is useful 

in determining where “hot spots” occur in the 
source code by measuring (cumulative) time 
consumed during the code execution. A profile of 
CMAQ is discussed to identify the compute 
intensive routines and their code characteristics. 
 

6. CMAQ PERFORMANCE RESULTS 
 

6.1 Operations, instructions, and cycles 
 
Figures 1 and 2, respectively, show the 

process time and Mflops (million floating point 
operations per second) for CMAQ on P3 and P4 
platforms. This (and all subsequent figures unless 
otherwise noted) show four executions for each of 
the Case 1 and Case 3 benchmarks defined in 
Section 3. Each group of four executions 
corresponds to the same choice of compiler 
switches listed in Table 1. Comparing Case 1 (C1) 
and Case 3 (C3) shows that the higher resolution 
grid (C3) typically has a 7% lower performance. 
The left and right hand parts show, respectively, 
the P3 and P4 results. As expected, the P4 
process time is less than the corresponding P3 
time. However, on both processors the higher 



 Copyright,  HiPERiSM Consulting, LLC  Monday, September 12, 2022 

3 

level optimizations (vect and sse) give negligible 
performance gain suggesting little (if any) vector 
character in CMAQ code. When sse switches 
were enabled the measured vector instruction 
counts were less than four percent of all floating 
point instructions issued. Thus the gain in 
performance for CAMQ between P3 and P4 
processors can be attributed largely to the 
improvement in scalar hardware performance. As 
examples of the latter, Fig. 3 shows the change in 
the instruction completion rate and a similar 
increase is observed in the rate at which cycles 
are completed.    
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Fig. 1. Process time for CMAQ model tutorial cases 1 
(C1) and 3 (C3) on P3 and P4 processors. Each case 
has the four groups of compiler switches defined in 
Table 1. 
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Fig. 2. Mflops for CMAQ model tutorial cases 1 (C1) and 
3 (C3) on P3 and P4 processors. Each case has the 
four groups of compiler switches defined in Table 1. 

 
Of special interest is the memory behavior of 

CMAQ and Fig. 4 shows the number of cycles 
stalled on any (memory) resource per unit time 
(the RES_STL_rate metric). Not surprisingly, there 
is a distinct improvement for the P4 over the P3 

due to the FSB bandwidth and cache size 
increases. However, there is variability in this 
metric for the P4 and a deeper investigation of the 
CMAQ memory footprint is appropriate. 
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Fig. 3. Instructions completed in million per second for 
CMAQ model tutorial cases 1 (C1) and 3 (C3) on P3 
and P4 processors. Each case has the four groups of 
compiler switches defined in Table 1. 
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Fig. 4. Cycles stalled on any resource in million per 
second for CMAQ model tutorial cases 1 (C1) and 3 
(C3) on P3 and P4 processors. Each case has the four 
groups of compiler switches defined in Table 1. 

 

6.2 Memory footprint 
 
The CMAQ memory footprint has some 

revealing characteristics. First of all, as shown in 
Fig. 5, the rate of total memory instructions issued 
(loads plus stores) is voluminous. Only results for 
the P4 processor are shown in Figs. 5 to 7 
because not all of these events are available on 
the P3. High rates of memory instruction issue, in 
itself, need not be an indicator of a performance 
bottleneck. Benchmarks with good vector 
character that deliver of the order of 1Gflop on a 
P4 can also show high memory access rates. 
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However, an interesting differentiator is the ratio 
metric MEM_INS_FPINS which is the number of 
memory instructions issued per floating point 
instruction. Figure 6 shows that with noopt 
compiler switches this number is greater than 7. 
Even on allowing optimization this metric is still of 
the order of 4. Note that Case 3 (8km grid) has a 
slightly higher value than than Case 1 (32km grid). 
Notably, the compiler offers no reduction with the 
higher optimization levels (vect, sse).  
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Fig. 5. Total memory instructions in million per second 
for CMAQ model tutorial cases 1 (C1) and 3 (C3) on the 
P4 processor. Each case has the four groups of 
compiler switches defined in Table 1. 
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Fig. 6. Number of memory instructions per floating point 
instruction for CMAQ model tutorial cases 1 (C1) and 3 
(C3) on the P4 processor. Each case has the four 
groups of compiler switches defined in Table 1. 
 

The results of the MEM_INS_FPINS metric 
suggests that CMAQ is a memory-intensive 
algorithm. This is not necessarily an issue on 
proprietary architectures where high memory 
bandwidth is available and multiple loads or stores 
per cycle are possible. However, a memory 
intensive application, without a dominant vector 

character, is performance constricted on 
commodity architectures where memory 
bandwidth is limited by the FSB and cache design. 

The consequence of CMAQ’s memory 
footprint is that cache can become a limiting 
critical resource. Between the processor and the 
first level of cache (L1) there is the TLB cache. 
The translation lookaside buffer (TLB) is a small 
buffer (or cache) to which the processor presents 
a virtual memory address and looks up a table for 
a translation to a physical memory address. If the 
address is found in the TLB table then there is a 
hit (no translation is computed) and the processor 
continues.  The TLB buffer is usually small, and 
efficiency depends on hit rates as high as 98%. If 
the translation is not found (a TLB miss) then 
several cycles are lost while the physical address 
is translated. Therefore TLB misses are another 
form of degraded performance. PAPI offers 
counters for TLB miss events for both instruction 
and data. In the case of CMAQ it is the data TLB 
misses that are critical. For example, comparison 
of the sse results for C1 and C3 in Fig. 7 shows a 
20% increase in TLB misses and this correlates 
with a Mflops reduction of 6.6% (see Fig. 2).  
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Fig. 7. TLB data cache misses in million per second for 
CMAQ model tutorial cases 1 (C1) and 3 (C3) on the P4 
processor. Each case has the four groups of compiler 
switches defined in Table 1. 

 

6.3 Cache usage 
 
A code that is memory intensive will be 

sensitive to cache misses on commodity 
architectures. Both the P3 and P4 platforms 
discussed here have L1 and L2 caches, but these 
are larger on the P4 platform. Nevertheless, a 
cache miss occurs when data or instructions are 
not found in the cache and an excursion to higher 
level cache or memory is necessitated. Cache 
misses result in lost performance because of 
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increasing latency in the memory hierarchy. 
Memory latency is smallest at the register level 
and increases by an order of magnitude for a L1 
cache reference, and another order of magnitude 
to access L2 cache.  In the case of CMAQ the rate 
of L1 cache misses are shown in Fig. 8 for P3 and 
P4 platforms. Despite the larger cache on the P4 
platform the incidence is much larger, due in part, 
to the higher rate of instruction issue. Even though 
the L1 cache on the P4 is larger than that of the 
P3, L1 data cache misses are a source of 
degraded performance for CMAQ.   
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Fig. 8. L1 Data cache miss rate in million per 
second for CMAQ model tutorial cases 1 (C1) and 3 
(C3) on P3 and P4 processors. Each case has the four 
groups of compiler switches defined in Table 1.  
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Fig. 9. L1 instruction, data, and total cache misses per 
floating point operation for CMAQ model tutorial cases 1 
(C1) and 3 (C3) on P3 and P4 processors. Each case 
has the four groups of compiler switches defined in 
Table 1. 

 
Since CMAQ has four memory operations per 

flop it is more instructive to inspect the number of 
L1 cache misses per flop. This is shown in Fig. 9 

for both L1 instruction and data cache misses for 
P3 and P4 platforms. Interestingly, on the P3, for 
the opt, vect and sse switch groups, the result of 
this ratio metric is similar for both instruction and 
data cache misses. However, for the P4 the 
number of instruction cache misses per flop is 
much smaller than the value for L1 data cache 
misses. The total number of L1 cache misses per 
flop are generally larger for the P3 when 
compared to the P4. It is noteworthy that the value 
of this metric for L1 data cache misses is of the 
order of 0.04 on the P4. One L1 data cache miss 
per 20 flops seems to be a small value. But for a 
memory intensive code with negligible vector 
instructions, the latency cost of memory access is 
the limiting factor on performance improvement 
above the opt level of compiler optimizations.   
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Fig. 10. L2 total cache misses per floating point 
operation for CMAQ model tutorial cases 1 (C1) and 3 
(C3) on P3 and P4 processors. Each case has the four 
groups of compiler switches defined in Table 1. 

 

7. CMAQ EXECUTION PROFILE 
 
An execution profile of CMAQ is easily 

performed with the –Mprof=lines compiler switch in 
the pgf90/95 compiler. Results for Case 3 (8km 
grid) with the sse optimization switches is shown 
in Table 4. This shows those functions accounting 
for 68% of the cumulative process time with some 
that have a high calling overhead. Once the 
important functions are identified code inspection 
shows some reasons why vector instructions are 
scarce in CMAQ. The top two routines account for 
31% of the process time but inhibit loop 
vectorization because of either exits out of the 
loop range (hrsolver), or I/O operations inside 
otherwise vectorizable loops (cksummer). 
Subroutine kmtab (and others not shown) account 
for a negligible amount of the process time but 
have a very high calling overhead. These routines 
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(and also vppm) should be inlined to reduce the 
cost of control transfer instructions. Inline methods 
are well documented in the PGI User’s Guide. 
Likewise interprocedural optimizations should be 
applied with the –Mipa  compiler switch. Both of 
these simple steps should give significant 
reductions of process time and will be tested at a 
later date. 

However, the removal of vectorization 
inhibitors in the top two routines would require 
source code modifications. 
 

 
TABLE 4. CMAQ P4 profile for Case 3 (sse) 

 

 
Function 

 

Number of calls Time (%) 

 

 

hrsolver 
cksummer 
hppm 
vppm 
ludcmp 
hrcalcks 
calcact 
kmtab 

2387952 
2473 

117832 
27461448 

2016360 
2387952 
9362289 

59699539 
 
 

16 
15 
14 
9 
6 
4 
2 
2 

……. 
68 

 

 

 

8. CONCLUSIONS 
 
This performance analysis of CMAQ, for two 

of the 4.4 release tutorial problems, at two grid 
resolutions, shows that this is a memory intensive 
application with some 4 memory operations to 
each floating point operation. Also, a negligible 
number of vector instructions are measured at the 
highest optimization level. In combination these 
two characteristics of the CMAQ code place a limit 
on the optimal performance possible from CMAQ 
on commodity platforms. This is because, by 
design, commodity hardware solutions offer a cost 
effective compromise between processor clock 
rates, cache size, and bandwidth (or latency) to 
memory. 

In its present form, CMAQ gains mostly from 
improvements in the scalar performance of the 
hardware. But, despite these observations, a 
profile of CMAQ performance, followed by code 
inspection, does suggest that there is scope for 
performance improvement beyond the 400 to 450 
Mflop range it currently delivers on the P4 for the 
tutorial problems that come with the 4.4 release. 
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