
Presented at the 9th Annual CMAS Conference, Chapel Hill, NC, October 11-13, 2010

DEVELOPING CMAQ FOR MANY-CORE AND GPGPU PROCESSORS

George Delic*
HiPERiSM Consulting, LLC, P.O. Box 569, Chapel Hill, NC 27514, USA

1. INTRODUCTION

Previous presentations by HiPERiSM

Consulting, LLC, in this conference series have
reported performance results for both serial and
multithread parallel versions of CMAQ (Delic,
2003-2009). This report presents results of porting
the multithreaded version of CMAQ to recent
multi-core and many-core processors. Examples
of the former are traditional x86_64 processors
while examples of the latter are General Purpose
Graphical Processing Units (GPGPU).

Both Rosenbrock (ROS3) and Gear (GEAR)
chemistry solver versions of CMAQ offer potential
for thread parallel code development, whereas the
Euler-Backward (EBI) solver does not. Recently a
thread-parallel version of the CMAQ Rosenbrock
solver (hereafter ROS3-HC), developed by
HiPERiSM Consulting, LLC, (Delic, 2009), was
delivered under contract to the U.S. EPA (See the
Acknowledgements). Selected results from this
study are presented here, together with an
exploration of GPGPU architectures. A case study
uses the thread-safe version of the CMAQ
Rosenbrock solver reported on in the previous
year’s CMAS conference (Delic, 2009). Although
some results for CMAQ 4.7 are included, this
report will focus on experiences with CMAQ 4.6.1
for ease of comparison with the previous report.

The ROS3-HC code is a hybrid parallel model
with three levels of parallelism. The (outer)
Message Passing Interface (MPI) level is the one
previously delivered in the standard U.S. EPA
distribution. The new (inner) parallel layers
developed at HiPERiSM have added both thread-
level parallelism and instruction-level parallelism
(at the vector loop level). These new parallel
layers in CMAQ are suitable candidates for both
multi-core and many-core targets.

2. CHOICE OF PLATFORMS

2.1 Hardware

The hardware systems chosen were the
platforms at HiPERiSM Consulting, LLC, shown in

*Corresponding author: George Delic,
george@hiperism.com.

Table 2.1. The GPGPU device shown in Table 2.1
was the first release with native double precision
capability and 4 Gigabytes of memory. It is
currently installed on the quad-core 1 (QC-1)
platform at HiPERiSM. The quad-core 2 (QC-2)
platform has scope for the addition of two (more
recent) GPGPU devices that offer 448 cores and
up to 6 Gigabytes of memory on each. Each of the
two platforms, QC-1 and QC-2, have a total of 8
cores and, when combined form a heterogeneous
cluster. This cluster is used for either MPI only, or
hybrid thread-parallel plus MPI execution, and
results for both modes are reported below.

Table 2.1. Processors at HiPERiSM Consulting, LLC

Platform SGI Altix quad-core
1

 quad-core
2

GPGPU

Processor Intel™ IA64
(107W)

Intel™
IA32

(X5450)

Intel™
IA32

(W5590)

Nvidia™
(C1060)

Cores per
processor 1 core 4 cores 4 cores 240 cores

Clock 1.5GHz 3.0GHz 3.33GHz 1.3GHz
Band-
width 6.4 GB/sec 10.6

GB/sec
64.0

GB/sec(1)
102
GB/sec

Bus speed 400 MHz 1333 MHz 1333
MHz(2) 800 MHz(4)

L1 cache 32KB 64 KB 64 KB NA
L2 cache 1 MB 12MB(3) 256MB NA
L3 cache 4MB NA 8MB NA

(1) Theoretical maximum.
(2) Value for one DDR3 DIMM per each of three channels per
processor (This value drops with more DIMMs per channel).
(3) Intel's first generation of Quadcore CPUs shared L2 cache between
cores.
(4) This is the on-device memory speed. Communication between the
GPGPU device and the host is via a PCI Express 2.0 x 16 system
interface.

2.2 Hardware bandwidth for MPI

Fig. 2.1 shows a comparison of MPI bandwidth
measurements for the SGI Altix and the quad-core
cluster (dual 4 core CPUs on two nodes) with
NumaLink® and Infiniband®SDR interconnect
fabrics, respectively. The SGI Altix is limited to 8
single core CPUs, and the quad core cluster has
two nodes with 2 quad core CPUs each. The
“local” curve of the quad-core cluster result
corresponds to scheduling MPI processes on the
same (master) node. However, the “non-local”
results correspond to MPI processes distributed
between the two nodes in the quad-core cluster
(with the exception of two MPI processes when
both processes resided on the master node). The
remarkable feature of Fig. 2.1 is how the on-node

1

Presented at the 9th Annual CMAS Conference, Chapel Hill, NC, October 11-13, 2010

bandwidth tracks closely the NumaLink® results
for the SGI Altix. This reflects the bandwidth boost
of the quad-core architecture over previous IA32
CPU generations. Clearly, it is most beneficial for
parallel execution on current multi-core cluster
nodes to remain on-node as much as possible to
utilize the on-node bandwidth.

MPI bandwidth (MB per second)

200

400

600

800

1000

1200

1400

0 2 4 6 8 10

Number of MPI processes

SGI Altix

QC (local)

QC (non-local)

Linear (SGI Altix)

Linear (QC (local))

Poly. (QC (non-local))

Fig 2.1: MPI bandwidth at HiPERiSM Consulting, LLC.

2.3 Compilers

Two popular compilers were used for this
CMAQ study. A comparison was made for both
the Intel™ 11.x and Portland 10.x Fortran
compilers on 64-bit SUSE Linux operating
systems. The ROS3-HC multi-threaded parallel
version was compiled and executed with both
compilers on all platforms shown in Table 2.1.
However, while the Intel™ compiler may be
implemented with the CUDA™ GPGPU
programming environment (CUDA), this was
deemed too labor intensive when compared with
the GPGPU interface of the PGI Accelerator™
Fortran compiler (PGI). This feature-rich compiler
simplifies prototype development and testing.

For each compiler four groups of optimization
switches were selected corresponding to no
optimization (ifc1, pgf1), some optimization (ifc2,
pgf2), best optimization (ifc4, pgf4), and enabling
control of arithmetic precision (ifc3, pgf3). The last
choice increases execution time but constrains
arithmetic operations to improve numerical
precision by several orders of magnitude with
either compiler. The reason for such constraints is
that some CMAQ species are more sensitive to
numerical differences than others, largely based
on the variability in concentration magnitudes
(those with largest variation being more at risk).
This study found that although the highest
optimization level, ifc4 of the Intel™ compiler
produce the shortest runtime, in some cases it
also introduces numerical differences that
compromise numerical precision for a small (10%)

subset of the species concentration value
population. This observation concerning the
Intel™ compiler applies for both Itanium2™ and
current generation quad-core processors.

3. EPISODES STUDIED

For CMAQ 4.6.1 results the model episode
selected was for August 14, 2006 (hereafter
20060814). This used the CB05 mechanism with
Chlorine extensions and the Aero 4 version for PM
modeling. For CMAQ 4.7.1 the model used the
episode for August 09, 2006 (hereafter 20060809)
with data provided by the U.S. EPA. Both
episodes were run for a full 24 hour scenario on a
279 X 240 Eastern US domain at 12 Km grid
spacing and 34 vertical layers.

4. SERIAL AND MPI RESULTS

4.1 Intel™ compiler on three platforms

Runtime results for CMAQ 4.6.1 with the three
solver versions is shown in Table 4.1 for three
generations of Intel platforms with the highest
optimization level (ifc4) for the Intel™ compiler.

Table 4.1. Wall clock times in hours for solvers in the
serial version of CMAQ 4.6.1 for the Intel™ compiler
with the fastest optimization (compiler group ifc4).

CMAQ
Solver

Time in hours by platform for Intel™
compiler group ifc4

Platform Itanium2™ ifc4 QC-1 ifc4 QC-2 ifc4
EBI-EPA 46.4 16.2 12.6
ROS3-EPA 54.2 25.7 17.3
GEAR-EPA 81.8 37.1 29.7

All three solver versions of CMAQ have gained
from the evolution of commodity computer
architectures with an average speed-up versus the
Itanium2™ of 2.4 (QC-1) and 3.2 (QC-2).
However, the speed-up of CMAQ on QC-2 versus
QC-1 is in the range 1.3 – 1.5 which is only half of
the potential speed-up possible between two
generations of quad-core processor technology.

4.2 Intel™ versus Portland™ compilers

Typical runtime results for the standard U.S.
EPA distribution of CMAQ 4.6.1 are shown in
Tables 4.2 and 4.3, for Intel™ and Portland™
compilers, respectively. In both cases the “*”
indicates dedicated runs and all others are for
concurrent execution. Table 4.4 show the ratios of

2

Presented at the 9th Annual CMAS Conference, Chapel Hill, NC, October 11-13, 2010

times in corresponding cells of the preceding two
tables.

Table 4.2. Wall clock times in hours for three solvers in
the serial version of CMAQ 4.6.1 on the QC-1 platform
for the Intel™ compiler switch groups ifc1 to ifc4.

Time in hours by compiler group CMAQ
Solver ifc1* ifc2 ifc3* ifc4*

EBI-EPA 74.4 16.3 20.5 16.2
ROS3-EPA 147.4 25.8 30.0 25.7
GEAR-EPA 183.7 37.1 41.4 37.1

The speed-up over the Itanium2™ platform

with the Intel™ compiler is in the range 2.1 to 2.9
on the QC-1 platform, depending on the solver
and compiler group used.

Table 4.3. Wall clock times in hours for three solvers in
the serial version of CMAQ 4.6.1 on the QC-1 platform
for the Portland compiler switch groups pgf1 to pgf4.

Time in hours by compiler group CMAQ
Solver pgf1 pgf2 pgf3* pgf4

EBI-EPA 38.3 19.1 19.7 18.3
ROS3-EPA 75.8 28.5 28.5 27.5
GEAR-EPA 120.0 43.8 43.5 42.7

In the QC-1 case the difference in times for

the ifc4 and pgf4 cases is due in part to the fact
that the pgf4 runs were concurrent (overlapping)
and this may expand wall clock time by the order
of 10%.

Table 4.4. Ratios of wall clock times for three solvers in
the serial version of CMAQ 4.6.1 on the QC-1 platform.
The ratios are for Intel™ (ifc) versus Portland (pgf)
compilers for each compiler switch group.

Ratios for wall clock time on the QC-1
platform and compiler group

CMAQ
Solver

 ifc1 /
pgf1

ifc2 /
pgf2

ifc3 /
pgf3

ifc4 /
pgf4

EBI-EPA 1.94 0.85 1.04 0.88
ROS3-EPA 1.94 0.91 1.05 0.93
GEAR-EPA 1.53 0.85 0.95 0.87

Note that, from Table 4.2, the increase in runtime
for use of the Intel™ compiler group ifc3 versus
ifc4 is in the range 10% to 27%, whereas for the
Portland compiler the corresponding increase is in
the range 2% to 8% (Table 4.3). As a result the
comparative times for use of groups ifc3 and pgf3
in the respective compilers shrinks to the order of
5%. The use of the ifc3 and pgf3 compiler groups
is recommended for reasons of improved precision
in concentration values for some species.

4.3 MPI results

The preceding tables showed results for the
standard U.S. EPA distribution with no parallel
execution enabled. This section presents MPI

results for EBI and Rosenbrock (ROS3) chemistry
solver versions of CMAQ 4.6.1. Table 4.5
summarizes the CMAQ 4.6.1 runtimes (in hours)
with the Portland compiler in an MPI
implementation. Also shown there is the scaling
with increasing MPI process count and it is notable
that speedup departs significantly from linearity
with more than 4 MPI processes.

Table 4.5. Wall clock times (in hours) and parallel
scaling, for two solvers in the MPI implementation of
EPA’s standard release of CMAQ 4.6.1 on the
HiPERiSM QC Cluster platform for the Portland
compiler group pgf3.

Time in hours (EPA) MPI speedup versus
NP=1

Col x Row
= NP

 EBI ROS3 EBI ROS3
1 x 1 = 1 19.6 29.0 1.0 1.0
1 x 2 = 2 10.9 15.1 1.8 1.9
2 x 2 = 4 6.4 8.2 3.1 3.5
2 x 4 = 8 3.9 5.1 5.1 5.7

2 x 8 = 16 2.6 3.3 7.5 8.7
4 x 4 = 16 2.9 3.4 6.8 8.4

Corresponding to the previous table, Fig. 4.1
summarizes the CMAQ 4.6.1 MPI parallel
efficiency with increasing process count. It is clear
that EBI and ROS3 solvers show a steep decline
in MPI parallel efficiency when NP>4. The
asymptote of parallel efficiency is of the order of
50% for 16 MPI processes where CPUs are idle
for half of the wall clock time (on average).

CMAQ 4.6.1 MPI parallel efficiency

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 x 1 = 1 1 x 2 = 2 2 x 2 = 4 2 x 4 = 8 2 x 8 = 16 4 x 4 = 16

Number of MPI processes (Column x Row)

EBI
ROS3

Fig 4.1: MPI parallel efficiency for CMAQ4.6.1 EBI and
ROS3 solvers.

5. OpenMP PARALLEL RESULTS

5.1 Intel™ compiler results for CMAQ 4.6.1

Runtime results for the thread parallel version of
CMAQ 4.6.1 with the fastest Intel™ compiler
switch group (ifc4) are presented here for the
parameter choices BLKSIZE=480 and

3

Presented at the 9th Annual CMAS Conference, Chapel Hill, NC, October 11-13, 2010

NCMAX=60. For a discussion of these parameters
see the previous report in this series (Delic, 2009).
Table 5.1 repeats the results from the previous
year’s presentation with a correction in
terminology. In this table two performance metrics
are introduced to assess thread parallel
performance:

(a) Speedup is the gain in runtime over the
standard U.S. EPA runtime,

(b) Scaling is the gain in runtime for thread
counts larger than 1, relative to the result
for a single thread in the ROS3-HC
modified code.

Table 5.1. For CMAQ 4.6.1, with the 20060814 episode,
this shows the wall clock time (in hours), speedup, and
scaling of the modified version (ROS3-HC) as a function
of increasing thread count on the QC-1 platform.

Number of threads CMAQ version for
Rosenbrock solver 1 2 4 8
U.S. EPA (hours) 25.3 NA NA NA
ROS3-HC (hours) 29.4 20.8 19.5 17.5
ROS3-HC (speedup) 0.86 1.22 1.30 1.45
ROS3-HC (scaling) 1.00 1.41 1.51 1.68

5.2 Intel™ compiler results for CMAQ 4.7.1

Runtime results for a pre-release version of
CMAQ 4.7.1 with the fastest Intel™ compiler
switch group (ifc4) are presented here for the
parameter choices BLKSIZE=480 and NCMAX=60.
These are shown in Tables 5.2 and 5.3, for QC-1
and QC-2, respectively, for the thread parallel
version.

Table 5.2. For CMAQ 4.7.1, with the 20060809 episode,
this shows the wall clock time (in hours), speedup, and
scaling of the modified version (ROS3-HC) as a function
of increasing thread count on the QC-1 platform.

Number of threads CMAQ version for
Rosenbrock solver 1 2 4 8
U.S. EPA (hours) 33.0 NA NA NA
ROS3-HC (hours) 36.0 29.7 26.1 23.9
ROS3-HC (speedup) 0.92 1.11 1.26 1.38
ROS3-HC (scaling) 1.00 1.21 1.38 1.51

Table 5.3. For CMAQ 4.7.1, with the 20060809 episode,
this shows the wall clock time (in hours), speedup, and
scaling of the modified version (ROS3-HC) as a function
of increasing thread count on the QC-2 platform.

Number of threads CMAQ version for
Rosenbrock solver 1 2 4 8
U.S. EPA (hours) 23.06 NA NA NA
ROS3-HC (hours) 26.06 21.7 18.6 17.3
ROS3-HC (speedup) 0.88 1.06 1.24 1.34
ROS3-HC (scaling) 1.00 1.20 1.40 1.51

5.3 Analysis of OpenMP results

The principal results in comparisons of the
above tables are as follows.

 The modified version of the ROS3-HC
solver for CMAQ showed typical speedup
with 8 parallel threads in the range 1.3 to
1.5 over the U.S. EPA version.

 The speedup metric shows CMAQ 4.7.1,
when compared to 4.6.1, has less gain in
performance with increasing thread count.

 CMAQ 4.7.1 requires considerably longer
runtimes compared to CMAQ 4.6.1.

 The gain in moving the U.S. EPA version
from QC-1 to QC-2 is 1.3.

 The gain in moving the ROS3-HC version
from QC-1 to QC-2 is 1.22 to 1.43
(depending on the number of threads).

The last two results are a consequence of

CMAQ 4.7.1 shifting the balance of arithmetic
operations further toward scalar work (i.e. less
vector-capable work) compared to CMAQ 4.6.1. In
other words, less time is spent in the chemistry
solver part relative to the rest of the model.

6. HYBRID OpenMP+MPI RESULTS

6.1 CMAQ 4.6.1 runtime

Runtime results with the Portland compiler
switch group pgf3 are presented here for the
parameter choices BLKSIZE=240 and NCMAX=30.
Table 6.1 summarizes the CMAQ 4.6.1 results for
episode 20060814 with the Portland 10.3
compiler.

Table 6.1. Wall clock times (in hours) in the hybrid
MPI+OpenMP version of the CMAQ 4.6.1 ROS3-HC
solver on the HiPERiSM QC Cluster platform for the
Portland compiler group pgf3.

ROS3-HC
Time in hours by thread count

Col x Row
= NP

ROS3-EPA
(hours)

1 2 4 8
1 x 1 = 1 29.0 34.8 24.1
1 x 2 = 2 15.1 15.2 13.3 12.6
2 x 2 = 4 8.2 8.0 7.5
2 x 4 = 8 5.1 5.0

Execution times of the standard EPA release

are in the column labeled ROS3-EPA. Columns
under the label ROS3-HC show results of the
hybrid MPI+OpenMP modified CMAQ version with
the Rosenbrock solver. The rows correspond to
the MPI process count (NP) and thread count is
the number appearing under the column labeled

4

Presented at the 9th Annual CMAS Conference, Chapel Hill, NC, October 11-13, 2010

as ROS3-HC. The blank cells indicate that results
are not yet available at this time, or are limited by
8 cores per node.

6.2 CMAQ 4.6.1 speedup

For the hybrid MPI+OpenMP modified CMAQ
version with the Rosenbrock solver, Table 6.2
shows the speedup metric corresponding to the
runtimes in Table 6.1.

Table 6.2. Speedup in the hybrid MPI+OpenMP version
of the CMAQ 4.6.1 ROS3-HC solver on the HiPERiSM
QC Cluster platform for the Portland compiler group
pgf3.

ROS3-HC vs ROS3-EPA
Speedup by thread count

Col x Row
= NP

1 2 4 8
1 x 1 = 1 0.83 1.20
1 x 2 = 2 1.00 1.14 1.20
2 x 2 = 4 1.03 1.10
2 x 4 = 8 1.00

7. OPPORTUNITIES FOR PERFORMANCE

7.1 Multi-thread CMAQ on a CPU

For ROS3-HC successful performance relies
on enhanced vector loop capability in the
Rosenbrock solver to take advantage of instruction
level parallelism. As noted previously (Delic,
2009), all 43 candidate loops in the OpenMP
version of CMAQ’s Rosenbrock solver do
vectorize. All that remains is to make the best
choice of vector length, NCMAX, and BLKSIZE,
such that BLKSIZE/NCMAX has no remainder.
The choice of values for the best BLKSIZE and
NCMAX combination depends on the cache and
memory architecture. Empirical studies (Delic,
2009) determined that, for host CPU architectures
such as QC-1 and QC-2, NCMAX should be in a
range 18 to 90 and BLKSIZE ≤ 480. Typically,
values of vector loop length NCMAX > 90 and
larger BLKSIZE choices increase the runtime on
multi-core commodity processors.

7.2 Many-thread CMAQ on a GPGPU

A successful port to a GPGPU device requires
either multilayered loop nests, or very long (single)
loops to reap the benefits of the many threads
such devices employ. This suggest that if the
NCMAX “vector” length could be made very large
there could be throughput benefits for a CMAQ
parallel version adapted for such devices. If at the
same time, the number (BLKSIZE) of cells in a

block could be increased, then the number of such
blocks passed to the solver would be reduced.
Consequently, the number of calls to the CMAQ
chemistry solver algorithm is fewer, and loops
spanning the entire block would be off-loaded to
the many-core device. This motivates the interest
in exploring the port of the ROS3-HC thread-safe
version of CMAQ to a GPGPU device.

7.3 Benchmark of CMAQ loop nests

As a sequel to the above proposal the vector
length for loops over domain cells in the CMAQ
4.6.1 ROS3-HC version was set equal to the block
size, NCMAX= BLKSIZE, with values of BLKSIZE
incremented in a wide range. Table 7.1 shows the
vector length increments chosen for this analysis
on both the host CPU (X5450) and the GPGPU
device (C1060). The domain size of 2,276,640
cells corresponds to the episodes described in
Section 3 above.

Table 7.1. Range of vector lengths used in benchmarks
on the host CPU and GPGPU device for a 279x240x34
domain size.

Number of blocks = number of
calls to the solver

Blocksize = vector length

8894 256
4447 512
2224 1024
1112 2048

556 4096
278 8192
139 16384

70 32768

For timing benchmarks several loop nests

from the CMAQ ROS3-HC thread parallel version
were selected. Table 7.2 lists the loop names used
below in figure legends. Details of the source code
constructs are described elsewhere (Delic, 2010).

Table 7.2. Loop names for loop nest benchmarks.

CMAQ-ROS3 solver loops used in benchmarks
Loop name Number of loop nests

in parallel region
Loop nest depth

L478 1 2
L522-37 2 2
L1240 2 2 and 1
L1284 3 1, 2, and 1

The Portland 10.6 Fortran compiler was used

with the pgf3 compiler group. For the host CPU
the loops were compiled as single threaded loops.
In the GPGPU case, the Portland Accelerator™
compiler generated kernels and data movement
for the target device by recognition of accelerator
directives that encapsulated loop nests in the

5

Presented at the 9th Annual CMAS Conference, Chapel Hill, NC, October 11-13, 2010

benchmarks. In conducting these benchmarks no
additional GPGPU optimizations were performed.

8. COMPARISON OF CPU AND GPGPU

For the benchmarks listed in Table 7.2, in the
ROS3-HC version of CMAQ, results of
benchmarks are presented for two performance
metrics as a function of increasing vector length:

 Ratio of times on the GPGPU device
versus the host CPU.

 Ratio of time for GPGPU computation
(kernel) versus time for moving data
between host and GPGPU device (data).

The first metric indicates a gain for the

GPGPU over the CPU performance when the
value is less than unity. The second metric is an
indicator of the level of computational intensity
(flops per memory operation) in each benchmark.
Results of these metrics for the range of vector
length in Table 7.1 are shown in Figs. 8.1 and Fig.
8.2, respectively.

Log of ratio of times:
GPGPU (C1060) / CPU (X5460)

0.1

1

10

100

1000

0 5000 10000 15000 20000 25000 30000 35000

Vector length

L478
L522-37
L1240
L1284

Fig 8.1: Ratio of time on the GPGPU device versus the
host CPU for each of the four CMAQ benchmarks in
Table 7.2.

Fig.8.1 shows that, with smaller values of the
vector length, the times on the host CPU are
typically orders of magnitude faster than the
GPGPU device. However, as vector length
increases, there is a rapid gain for GPGPU
performance with the L1240 benchmark
outperforming the host CPU time for the longest
vector length.

However, one of the penalties for using the
attached GPGPU device is the cost of moving
data between the host and the device. For three of
the benchmarks, Fig.8.2 shows the ratio of
computation time to data movement time when the
GPGPU is utilized. For the largest vector lengths

this ratio is ≤ 1 suggesting that the cost of data
movement dominates the kernel computation time.

Ratio of GPGPU (C1060) times: kernel / data

0.000
0.200
0.400
0.600
0.800
1.000
1.200
1.400
1.600
1.800
2.000

0 5000 10000 15000 20000 25000 30000 35000

Vector length

L478
L1240
L1284

Fig 8.2: Ratio of time spent in kernels on the GPGPU
device versus the time required to move data between
the host CPU the GPGPU device for three CMAQ
benchmarks in Table 7.2.

9. CONCLUSIONS

This report has described a successful port to
recent multi-core CPUs of a parallel hybrid
(OpenMP and MPI) version of CMAQ for the
Rosenbrock solver. Exploratory benchmarks with
selected loops on a many-core GPGPU device
suggest that opportunities exist for CMAQ on such
devices, but more work is needed to improve
performance. Further opportunities remain for
thread parallelism in other parts of the CMAQ
model outside of the chemistry solver.

REFERENCES

CUDA http://www.nvidia.com/object/cuda_home_new.html

Delic, 2003-2009: see presentations at the Annual
CMAS meetings (http://www.cmasecenter.org).

Delic, 2009, 8th Annual CMAS Conference, Chapel
Hill, NC, October 19-21, 2009.

Delic, 2010, Technical Report HCTR-2010-5 at
http://www.hiperism.com

PGI: The Portland Group http://www.pgroup.com

ACKNOWLEDGEMENTS

Part of this work was performed by HiPERiSM
Consulting, LLC, as subcontractor to Computer
Sciences Corporation, under U.S. EPA SES3
Contract GS-35F-4381G BPA 0775, Task Order
1522

6

http://www.nvidia.com/object/cuda_home_new.html
http://www.cmasecenter.org/
http://www.hiperism.com/HCTR2010_5.html
http://www.hiperism.com/
http://www.pgroup.com/

