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1. INTRODUCTION 
 
Previous presentations by HiPERiSM 

Consulting, LLC, in this conference series have 
reported performance results for both serial and 
multithread parallel versions of CMAQ (Delic, 
2003-2009). This report presents results of porting 
the multithreaded version of CMAQ to recent 
multi-core and many-core processors. Examples 
of the former are traditional x86_64 processors 
while examples of the latter are General Purpose 
Graphical Processing Units (GPGPU). 

Both Rosenbrock (ROS3) and Gear (GEAR) 
chemistry solver versions of CMAQ offer potential 
for thread parallel code development, whereas the 
Euler-Backward (EBI) solver does not. Recently a 
thread-parallel version of the CMAQ Rosenbrock 
solver (hereafter ROS3-HC), developed by 
HiPERiSM Consulting, LLC, (Delic, 2009), was 
delivered under contract to the U.S. EPA (See the 
Acknowledgements). Selected results from this 
study are presented here, together with an 
exploration of GPGPU architectures. A case study 
uses the thread-safe version of the CMAQ 
Rosenbrock solver reported on in the previous 
year’s CMAS conference (Delic, 2009). Although 
some results for CMAQ 4.7 are included, this 
report will focus on experiences with CMAQ 4.6.1 
for ease of comparison with the previous report. 

The ROS3-HC code is a hybrid parallel model 
with three levels of parallelism. The (outer) 
Message Passing Interface (MPI) level is the one 
previously delivered in the standard U.S. EPA 
distribution. The new (inner) parallel layers 
developed at HiPERiSM have added both thread-
level parallelism and instruction-level parallelism 
(at the vector loop level). These new parallel 
layers in CMAQ are suitable candidates for both 
multi-core and many-core targets. 

 
2. CHOICE OF PLATFORMS 

 
2.1 Hardware 
 

The hardware systems chosen were the 
platforms at HiPERiSM Consulting, LLC, shown in 
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Table 2.1. The GPGPU device shown in Table 2.1 
was the first release with native double precision 
capability and 4 Gigabytes of memory. It is 
currently installed on the quad-core 1 (QC-1) 
platform at HiPERiSM. The quad-core 2 (QC-2) 
platform has scope for the addition of two (more 
recent) GPGPU devices that offer 448 cores and 
up to 6 Gigabytes of memory on each. Each of the 
two platforms, QC-1 and QC-2, have a total of 8 
cores and, when combined form a heterogeneous 
cluster. This cluster is used for either MPI only, or 
hybrid thread-parallel plus MPI execution, and 
results for both modes are reported below. 
 
Table 2.1. Processors at HiPERiSM Consulting, LLC 

Platform  SGI Altix  quad-core 
1 

 quad-core 
2 

GPGPU 

Processor Intel™ IA64 
(107W) 

Intel™ 
IA32 

(X5450) 

Intel™ 
IA32 

(W5590) 

Nvidia™ 
(C1060) 

Cores per 
processor 1 core 4 cores 4 cores 240 cores 

Clock 1.5GHz 3.0GHz 3.33GHz 1.3GHz 
Band-
width 6.4 GB/sec 10.6 

GB/sec 
64.0 

GB/sec(1)
102 
GB/sec 

Bus speed 400 MHz  1333 MHz 1333 
MHz(2) 800 MHz(4)

L1 cache 32KB 64 KB 64 KB NA 
L2 cache 1 MB 12MB(3) 256MB NA 
L3 cache 4MB NA 8MB NA 

(1) Theoretical maximum. 
(2) Value for one DDR3 DIMM per each of three channels per 
processor (This value drops with more DIMMs per channel). 
(3) Intel's first generation of Quadcore CPUs shared L2 cache between 
cores. 
(4) This is the on-device memory speed. Communication between the 
GPGPU device and the host is via a PCI Express 2.0 x 16 system 
interface. 

 
2.2 Hardware bandwidth for MPI 
 
Fig. 2.1 shows a comparison of MPI bandwidth 
measurements for the SGI Altix and the quad-core 
cluster (dual 4 core CPUs on two nodes) with 
NumaLink® and Infiniband®SDR interconnect 
fabrics, respectively. The SGI Altix is limited to 8 
single core CPUs, and the quad core cluster has 
two nodes with 2 quad core CPUs each. The 
“local” curve of the quad-core cluster result 
corresponds to scheduling MPI processes on the 
same (master) node. However, the “non-local” 
results correspond to MPI processes distributed 
between the two nodes in the quad-core cluster 
(with the exception of two MPI processes when 
both processes resided on the master node). The 
remarkable feature of Fig. 2.1 is how the on-node 
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bandwidth tracks closely the NumaLink® results 
for the SGI Altix. This reflects the bandwidth boost 
of the quad-core architecture over previous IA32 
CPU generations. Clearly, it is most beneficial for 
parallel execution on current multi-core cluster 
nodes to remain on-node as much as possible to 
utilize the on-node  bandwidth. 
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Fig 2.1: MPI bandwidth at HiPERiSM Consulting, LLC. 
 
2.3 Compilers 
 

Two popular compilers were used for this 
CMAQ study. A comparison was made for both 
the Intel™ 11.x and Portland 10.x Fortran 
compilers on 64-bit SUSE Linux operating 
systems. The ROS3-HC multi-threaded parallel 
version was compiled and executed with both 
compilers on all platforms shown in Table 2.1. 
However, while the Intel™ compiler may be 
implemented with the CUDA™ GPGPU 
programming environment (CUDA), this was 
deemed too labor intensive when compared with 
the GPGPU interface of the PGI Accelerator™ 
Fortran compiler (PGI). This feature-rich compiler 
simplifies prototype development and testing. 

For each compiler four groups of optimization 
switches were selected corresponding to no 
optimization (ifc1, pgf1), some optimization (ifc2, 
pgf2), best optimization (ifc4, pgf4), and enabling 
control of arithmetic precision (ifc3, pgf3). The last 
choice increases execution time but constrains 
arithmetic operations to improve numerical 
precision by several orders of magnitude with 
either compiler. The reason for such constraints is 
that some CMAQ species are more sensitive to 
numerical differences than others, largely based 
on the variability in concentration magnitudes 
(those with largest variation being more at risk). 
This study found that although the highest 
optimization level, ifc4 of the Intel™ compiler 
produce the shortest runtime, in some cases it 
also introduces numerical differences that 
compromise numerical precision for a small (10%) 

subset of the species concentration value 
population. This observation concerning the 
Intel™ compiler applies for both Itanium2™ and 
current generation quad-core processors. 
 

 
3. EPISODES STUDIED 
 

For CMAQ 4.6.1 results the model episode 
selected was for August 14, 2006 (hereafter 
20060814). This used the CB05 mechanism with 
Chlorine extensions and the Aero 4 version for PM 
modeling. For CMAQ 4.7.1 the model used the 
episode for August 09, 2006 (hereafter 20060809) 
with data provided by the U.S. EPA. Both 
episodes were run for a full 24 hour scenario on a 
279 X 240 Eastern US domain at 12 Km grid 
spacing and 34 vertical layers. 

 
  
4. SERIAL AND MPI RESULTS  

 
4.1 Intel™ compiler on three platforms 
 

Runtime results for CMAQ 4.6.1 with the three 
solver versions is shown in Table 4.1 for three 
generations of Intel platforms with the highest 
optimization level (ifc4) for the Intel™ compiler. 

 
Table 4.1. Wall clock times in hours for solvers in the 
serial version of CMAQ 4.6.1 for the Intel™ compiler 
with the fastest optimization (compiler group ifc4). 

CMAQ 
Solver 

Time in hours by platform for Intel™ 
compiler  group ifc4 

Platform Itanium2™ ifc4 QC-1 ifc4 QC-2 ifc4 
EBI-EPA 46.4 16.2 12.6 
ROS3-EPA 54.2 25.7 17.3 
GEAR-EPA 81.8 37.1 29.7 

 
All three solver versions of CMAQ have gained 
from the evolution of commodity computer 
architectures with an average speed-up versus the 
Itanium2™ of 2.4 (QC-1) and 3.2 (QC-2). 
However, the speed-up of CMAQ on QC-2 versus 
QC-1 is in the range 1.3 – 1.5 which is only half of 
the potential speed-up possible between two 
generations of quad-core processor technology.  
 
4.2 Intel™ versus Portland™ compilers  
 

Typical runtime results for the standard U.S. 
EPA distribution of CMAQ 4.6.1 are shown in 
Tables 4.2 and 4.3, for Intel™ and Portland™ 
compilers, respectively. In both cases the “*” 
indicates dedicated runs and all others are for 
concurrent execution. Table 4.4 show the ratios of 
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times in corresponding cells of the preceding two 
tables. 

 
Table 4.2. Wall clock times in hours for three solvers in 
the serial version of CMAQ 4.6.1 on the QC-1 platform 
for the Intel™ compiler switch groups ifc1 to ifc4. 

Time in hours by compiler group CMAQ 
Solver ifc1* ifc2 ifc3* ifc4* 

EBI-EPA 74.4 16.3 20.5 16.2 
ROS3-EPA 147.4 25.8 30.0 25.7 
GEAR-EPA 183.7 37.1 41.4 37.1 

 
The speed-up over the Itanium2™ platform 

with the Intel™ compiler is in the range 2.1 to 2.9 
on the QC-1 platform, depending on the solver 
and compiler group used. 
 
Table 4.3. Wall clock times in hours for three solvers in 
the serial version of CMAQ 4.6.1 on the QC-1 platform 
for the Portland compiler switch groups pgf1 to pgf4. 

Time in hours by compiler group CMAQ 
Solver pgf1 pgf2 pgf3* pgf4 

EBI-EPA 38.3 19.1 19.7 18.3 
ROS3-EPA 75.8 28.5 28.5 27.5 
GEAR-EPA 120.0 43.8 43.5 42.7 

 
In the QC-1 case the difference in times for 

the ifc4 and pgf4 cases is due in part to the fact 
that the pgf4 runs were concurrent (overlapping) 
and this may expand wall clock time by the order 
of 10%. 
 
Table 4.4. Ratios of wall clock times for three solvers in 
the serial version of CMAQ 4.6.1 on the QC-1 platform. 
The ratios are for Intel™ (ifc) versus Portland (pgf) 
compilers for each compiler switch group. 

Ratios for wall clock time on the QC-1 
platform and compiler group 

CMAQ 
Solver 

 ifc1 / 
pgf1 

ifc2 / 
pgf2 

ifc3 / 
pgf3 

ifc4 / 
pgf4 

EBI-EPA 1.94 0.85 1.04 0.88 
ROS3-EPA 1.94 0.91 1.05 0.93 
GEAR-EPA 1.53 0.85 0.95 0.87 

 
Note that, from Table 4.2, the increase in runtime 
for use of the Intel™ compiler group ifc3 versus 
ifc4 is in the range 10% to 27%, whereas for the 
Portland compiler the corresponding increase is in 
the range 2% to 8% (Table 4.3). As a result the 
comparative times for use of groups ifc3 and pgf3 
in the respective compilers shrinks to the order of 
5%. The use of the ifc3 and pgf3 compiler groups 
is recommended for reasons of improved precision 
in concentration values for some species. 
 
4.3 MPI results  
 

The preceding tables showed results for the 
standard U.S. EPA distribution with no parallel 
execution enabled. This section presents MPI 

results for EBI and Rosenbrock (ROS3) chemistry 
solver versions of CMAQ 4.6.1. Table 4.5 
summarizes the CMAQ 4.6.1 runtimes (in hours) 
with the Portland compiler in an MPI 
implementation. Also shown there is the scaling 
with increasing MPI process count and it is notable 
that speedup departs significantly from linearity 
with more than 4 MPI processes. 
 
Table 4.5. Wall clock times (in hours) and parallel 
scaling, for two solvers in the MPI implementation of 
EPA’s standard release of CMAQ 4.6.1 on the 
HiPERiSM QC Cluster platform for the Portland 
compiler group pgf3. 

Time in hours (EPA) MPI speedup versus 
NP=1 

Col x Row 
= NP 

 EBI ROS3  EBI ROS3 
1 x 1 = 1 19.6 29.0 1.0 1.0 
1 x 2 = 2 10.9 15.1 1.8 1.9 
2 x 2 = 4 6.4 8.2 3.1 3.5 
2 x 4 = 8 3.9 5.1 5.1 5.7 

2 x 8 = 16 2.6 3.3 7.5 8.7 
4 x 4 = 16 2.9 3.4 6.8 8.4 

 
Corresponding to the previous table, Fig. 4.1 
summarizes the CMAQ 4.6.1 MPI parallel 
efficiency with increasing process count. It is clear 
that EBI and ROS3 solvers show a steep decline 
in MPI parallel efficiency when NP>4. The 
asymptote of parallel efficiency is of the order of 
50% for 16 MPI processes where CPUs are idle 
for half of the wall clock time (on average). 
 

CMAQ 4.6.1 MPI parallel efficiency
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Fig 4.1: MPI parallel efficiency for CMAQ4.6.1 EBI and 
ROS3 solvers. 
 
 
5. OpenMP PARALLEL RESULTS  

 
5.1 Intel™ compiler results for CMAQ 4.6.1 
 
Runtime results for the thread parallel version of 
CMAQ 4.6.1 with the fastest Intel™ compiler 
switch group (ifc4) are presented here for the 
parameter choices BLKSIZE=480 and 

3 



Presented at the 9th Annual CMAS Conference, Chapel Hill, NC, October 11-13, 2010 

NCMAX=60. For a discussion of these parameters 
see the previous report in this series (Delic, 2009). 
Table 5.1 repeats the results from the previous 
year’s presentation with a correction in 
terminology. In this table two performance metrics 
are introduced to assess thread parallel 
performance: 

(a) Speedup is the gain in runtime over the 
standard U.S. EPA runtime, 

(b) Scaling is the gain in runtime for thread 
counts larger than 1, relative to the result 
for a single thread in the ROS3-HC 
modified code. 

 
Table 5.1. For CMAQ 4.6.1, with the 20060814 episode, 
this shows the wall clock time (in hours),  speedup, and 
scaling of the modified version (ROS3-HC) as a function 
of increasing thread count on the QC-1 platform. 

Number of threads CMAQ version for 
Rosenbrock solver 1 2 4 8 
U.S. EPA (hours) 25.3 NA NA NA 
ROS3-HC (hours) 29.4 20.8 19.5 17.5 
ROS3-HC (speedup) 0.86 1.22 1.30 1.45 
ROS3-HC (scaling) 1.00 1.41 1.51 1.68 

 
5.2 Intel™ compiler results for CMAQ 4.7.1 
 

Runtime results for a pre-release version of 
CMAQ 4.7.1 with the fastest Intel™ compiler 
switch group (ifc4) are presented here for the 
parameter choices BLKSIZE=480 and NCMAX=60. 
These are shown in Tables 5.2 and 5.3, for QC-1 
and QC-2, respectively, for the thread parallel 
version. 
 
Table 5.2. For CMAQ 4.7.1, with the 20060809 episode, 
this shows the wall clock time (in hours),  speedup, and 
scaling of the modified version (ROS3-HC) as a function 
of increasing thread count on the QC-1 platform. 

Number of threads CMAQ version for 
Rosenbrock solver 1 2 4 8 
U.S. EPA (hours) 33.0 NA NA NA 
ROS3-HC (hours) 36.0 29.7 26.1 23.9 
ROS3-HC (speedup) 0.92 1.11 1.26 1.38 
ROS3-HC (scaling) 1.00 1.21 1.38 1.51 

 
Table 5.3. For CMAQ 4.7.1, with the 20060809 episode, 
this shows the wall clock time (in hours),  speedup, and 
scaling of the modified version (ROS3-HC) as a function 
of increasing thread count on the QC-2 platform. 

Number of threads CMAQ version for 
Rosenbrock solver 1 2 4 8 
U.S. EPA (hours) 23.06 NA NA NA 
ROS3-HC (hours) 26.06 21.7 18.6 17.3 
ROS3-HC (speedup) 0.88 1.06 1.24 1.34 
ROS3-HC (scaling) 1.00 1.20 1.40 1.51 

 
 
 
 

5.3 Analysis of OpenMP  results 
 

The principal results in comparisons of the 
above tables are as follows. 

 The modified version of the ROS3-HC 
solver for CMAQ showed typical speedup 
with 8 parallel threads in the range 1.3 to 
1.5 over the U.S. EPA version. 

 The speedup metric shows CMAQ 4.7.1, 
when compared to 4.6.1, has less gain in 
performance with increasing thread count. 

 CMAQ 4.7.1 requires considerably longer 
runtimes compared to CMAQ 4.6.1. 

 The gain in moving the U.S. EPA version 
from QC-1 to QC-2 is 1.3. 

 The gain in moving the ROS3-HC version 
from QC-1 to QC-2 is 1.22 to 1.43 
(depending on the number of threads). 

 
The last two results are a consequence of 

CMAQ 4.7.1 shifting the balance of arithmetic 
operations further toward scalar work (i.e. less 
vector-capable work) compared to CMAQ 4.6.1. In 
other words, less time is spent in the chemistry 
solver part relative to the rest of the model. 

 
 
6. HYBRID OpenMP+MPI RESULTS 
 
6.1 CMAQ 4.6.1 runtime 
 

Runtime results with the Portland compiler 
switch group pgf3 are presented here for the 
parameter choices BLKSIZE=240 and NCMAX=30. 
Table 6.1 summarizes the CMAQ 4.6.1 results for 
episode 20060814 with the Portland 10.3 
compiler. 
 
Table 6.1. Wall clock times (in hours) in the hybrid 
MPI+OpenMP version of the CMAQ 4.6.1 ROS3-HC 
solver on the HiPERiSM QC Cluster platform for the 
Portland compiler group pgf3. 

ROS3-HC 
Time in hours by thread count 

Col x Row 
= NP 

ROS3-EPA 
(hours) 

1 2 4 8 
1 x 1 = 1 29.0 34.8   24.1 
1 x 2 = 2 15.1  15.2 13.3 12.6 
2 x 2 = 4 8.2  8.0 7.5  
2 x 4 = 8 5.1  5.0   

 
Execution times of the standard EPA release 

are in the column labeled ROS3-EPA. Columns 
under the label ROS3-HC show results of the 
hybrid MPI+OpenMP modified CMAQ version with 
the Rosenbrock solver. The rows correspond to 
the MPI process count (NP) and thread count is 
the number appearing under the column labeled 
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as ROS3-HC. The blank cells indicate that results 
are not yet available at this time, or are limited by 
8 cores per node. 
 
6.2 CMAQ 4.6.1 speedup 
 

For the hybrid MPI+OpenMP modified CMAQ 
version with the Rosenbrock solver, Table 6.2 
shows the speedup metric corresponding to the 
runtimes in Table 6.1. 
 
Table 6.2. Speedup in the hybrid MPI+OpenMP version 
of the CMAQ 4.6.1 ROS3-HC solver on the HiPERiSM 
QC Cluster platform for the Portland compiler group 
pgf3. 

ROS3-HC vs ROS3-EPA 
Speedup by thread count 

Col x Row 
= NP 

1 2 4 8 
1 x 1 = 1 0.83   1.20 
1 x 2 = 2  1.00 1.14 1.20 
2 x 2 = 4  1.03 1.10  
2 x 4 = 8  1.00   

 
 
7. OPPORTUNITIES FOR PERFORMANCE 
 
7.1 Multi-thread CMAQ on a CPU 
 

For ROS3-HC successful performance relies 
on enhanced vector loop capability in the 
Rosenbrock solver to take advantage of instruction 
level parallelism. As noted previously (Delic, 
2009), all 43 candidate loops in the OpenMP 
version of CMAQ’s Rosenbrock solver do 
vectorize. All that remains is to make the best 
choice of vector length, NCMAX, and BLKSIZE, 
such that BLKSIZE/NCMAX has no remainder. 
The choice of values for the best BLKSIZE and 
NCMAX combination depends on the cache and 
memory architecture. Empirical studies (Delic, 
2009) determined that, for host CPU architectures 
such as QC-1 and QC-2, NCMAX should be in a 
range 18 to 90 and BLKSIZE ≤ 480. Typically, 
values of vector loop length NCMAX > 90 and 
larger BLKSIZE choices increase the runtime on 
multi-core commodity processors. 
 
7.2 Many-thread CMAQ on a GPGPU 
 

A successful port to a GPGPU device requires 
either multilayered loop nests, or very long (single) 
loops to reap the benefits of the many threads 
such devices employ. This suggest that if the 
NCMAX “vector” length could be made very large 
there could be throughput benefits for a CMAQ 
parallel version adapted for such devices. If at the 
same time, the number (BLKSIZE) of cells in a 

block could be increased, then the number of such 
blocks passed to the solver would be reduced. 
Consequently, the number of calls to the CMAQ 
chemistry solver algorithm is fewer, and loops 
spanning the entire block would be off-loaded to 
the many-core device. This motivates the interest 
in exploring the port of the ROS3-HC thread-safe 
version of CMAQ to a GPGPU device. 
 
7.3 Benchmark of CMAQ loop nests 
 

As a sequel to the above proposal the vector 
length for loops over domain cells in the CMAQ 
4.6.1 ROS3-HC version was set equal to the block 
size, NCMAX= BLKSIZE, with values of BLKSIZE 
incremented in a wide range. Table 7.1 shows the 
vector length increments chosen for this analysis 
on both the host CPU (X5450) and the GPGPU 
device (C1060). The domain size of 2,276,640 
cells corresponds to the episodes described in 
Section 3 above. 

 
Table 7.1. Range of vector lengths used in benchmarks 
on the host CPU and GPGPU device for a 279x240x34 
domain size. 

Number of blocks = number of 
calls to the solver 

Blocksize = vector length 

8894 256 
4447 512 
2224 1024 
1112 2048 

556 4096 
278 8192 
139 16384 

70 32768 
 
For timing benchmarks several loop nests 

from the CMAQ ROS3-HC thread parallel version 
were selected. Table 7.2 lists the loop names used 
below in figure legends. Details of the source code 
constructs are described elsewhere (Delic, 2010). 

 
Table 7.2. Loop names  for loop nest benchmarks. 

CMAQ-ROS3 solver loops used in benchmarks 
Loop name Number of loop nests 

in parallel region 
Loop nest depth 

L478 1 2 
L522-37 2 2 
L1240 2 2 and 1 
L1284 3 1, 2, and 1 

 
The Portland 10.6 Fortran compiler was used 

with the pgf3 compiler group. For the host CPU 
the loops were compiled as single threaded loops. 
In the GPGPU case, the Portland Accelerator™ 
compiler generated kernels and data movement 
for the target device by recognition of accelerator 
directives that encapsulated loop nests in the 
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benchmarks. In conducting these benchmarks no 
additional GPGPU optimizations were performed. 
 
 
8. COMPARISON OF CPU AND GPGPU 
 

For the benchmarks listed in Table 7.2, in the 
ROS3-HC version of CMAQ, results of 
benchmarks are presented for two performance 
metrics as a function of increasing vector length:  

 Ratio of times on the GPGPU device 
versus the host CPU. 

 Ratio of time for GPGPU computation 
(kernel) versus time for moving data 
between host and GPGPU device (data). 

 
The first metric indicates a gain for the 

GPGPU over the CPU performance when the 
value is less than unity. The second metric is an 
indicator of the level of computational intensity 
(flops per memory operation) in each benchmark. 
Results of these metrics for the range of vector 
length in Table 7.1 are shown in Figs. 8.1 and Fig. 
8.2, respectively. 
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Fig 8.1: Ratio of time on the GPGPU device versus the 
host CPU for each of the four CMAQ benchmarks in 
Table 7.2. 
 

Fig.8.1 shows that, with smaller values of the 
vector length, the times on the host CPU are 
typically orders of magnitude faster than the 
GPGPU device.  However, as vector length 
increases, there is a rapid gain for GPGPU 
performance with the L1240 benchmark 
outperforming the host CPU time for the longest 
vector length.  

However, one of the penalties for using the 
attached GPGPU device is the cost of moving 
data between the host and the device. For three of 
the benchmarks, Fig.8.2 shows the ratio of 
computation time to data movement time when the 
GPGPU is utilized. For the largest vector lengths 

this ratio is ≤ 1 suggesting that the cost of data 
movement dominates the kernel computation time. 
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Fig 8.2: Ratio of time spent in kernels on the GPGPU 
device versus the time required to move data between 
the host CPU the GPGPU device for three CMAQ 
benchmarks in Table 7.2. 
 
9. CONCLUSIONS 
 

This report has described a successful port to 
recent multi-core CPUs of a parallel hybrid 
(OpenMP and MPI) version of CMAQ for the 
Rosenbrock solver. Exploratory benchmarks with 
selected loops on a many-core GPGPU device 
suggest that opportunities exist for CMAQ on such 
devices, but more work is needed to improve 
performance.  Further opportunities remain for 
thread parallelism in other parts of the CMAQ 
model outside of the chemistry solver. 
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